• Title/Summary/Keyword: algae extracts

Search Result 142, Processing Time 0.031 seconds

Removal of Microcystis aeruginosa using Pine Needle Extracts (솔잎추출액을 이용한 Microcystis aeruginosa 제거 연구)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Microcystis aeruginosa (M. aeruginosa) is a cyanobacterium species that can form harmful algal blooms in freshwater bodies worldwide. The use of pine needle extract (PNE) to control nuisance algae by allelopathic inhibition will be environmentally friendly and promising. PNE removed successfully upto 98% of M. aeruginosa at the following optimal conditions: pH 7, $25^{\circ}C$ of temperature, 100 rpm of mixing rate, 5 min of mixing time. These results was indicated that the amount of 1 g/L PNE was removed 1g dryweight/L of M. aeruginosa. The kinetic data showed substrate inhibition kinetics and maximum growth rate was obtained when the M. aeruginosa was grown in medium containing 0.5 g/L of initial concentration of PNE. Different substrate inhibition models were fitted to the kinetic data and found the Luong model was best. The model predicted kinetic parameters were in agreement with the experimental findings. The natural extract, PNE, can be a promising inhibition due to its high efficiency and low dose requirements.

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

Effects of Seaweed Extracts and Corn Starch on the Characteristics of Acorn Mooks (해조류와 옥수수 전분의 첨가가 도토리묵의 물성에 미치는 영향)

  • 윤광섭;홍주헌;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • The physical and processing properties of acorn jelly were investigated to see the effect of polysaccharides in seaweed extract and corn starch. The yield of acorn jelly added starch concentration was slightly increased when the concentration was added more. However, moisture content and color had no significant changes with concentration. In the case of acorn jelly added sea tangle, color of acorn jelly was darker, but color of the jelly with carrageenan was lighter. According to the concentration of seaweed extract, the hardness was increased as concentration was added. The texture of acorn Jelly added agar had the highest binding. In the case of acorn jelly added corn starch, there were no significant changes, but this binding was stronger than the acorn jelly added extract of marine algae. In the physical and sensory properties of acorn jelly with corn starch, the ideal mixture ratio between the acorn jelly and the corn starch was 6:4.

  • PDF

Comparison of fucosterol content in algae using high-performance liquid chromatography

  • Lee, Jeong Min;Jeon, Jae Hyuk;Yim, Mi-Jin;Choi, Grace;Lee, Myeong Seok;Park, Yun Gyeong;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.9.1-9.6
    • /
    • 2020
  • Background: Fucosterol is a compound commonly found in algae that has various biological activities. The purpose of this study was to develop a high-performance liquid chromatography (HPLC) validation method for fucosterol and to compare the fucosterol contents of 11 algal species from Ulleungdo, Korea. Method: In this study, we successfully isolated and identified fucosterol from a 70% EtOH extract of Sargassum miyabei, and subsequently conducted specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision analyses for development of an HPLC validation method. Fucosterol contents were compared using the established HPLC validation conditions. Results: We successfully isolated fucosterol from a 70% EtOH extract of S. miyabei and identified it based on spectroscopic analysis. On the basis of HPLC validation using the fucosterol isolated from S. miyabei, we confirmed specificity (8.5 min), linearity (R2 = 0.9998), LOD (3.20 ㎍ mL-1), LOQ (9.77 ㎍ mL-1), accuracy (intra-day and inter-day variation, 90-110%), and precision (RSD, 1.07%). Fucosterol contents in the 11 assessed algal species ranged from 0.22 to 81.67 mg g-1, with the highest content being recorded in a 70% EtOH extract of Desmarestia tabacoides (81.67 mg g-1), followed by that of Agarum clathratum (78.70 mg g-1). Conclusions: The results indicate that 70% EtOH extracts of D. tabacoides and A. clathratum containing fucosterol with various effects can be potential alternative sources of fucosterol.

Identification and toxigenic potential of a Nostoc sp.

  • Nowruzi, Bahareh;Khavari-Nejad, Ramezan-Ali;Sivonen, Karina;Kazemi, Bahram;Najafi, Farzaneh;Nejadsattari, Taher
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.303-313
    • /
    • 2012
  • Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.

Thermostability of a marine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava

  • Kang, Min-Cheol;Kim, Eun-A;Kang, Sung-Myung;Wijesinghe, W.A.J.P.;Yang, Xiudong;Kang, Na-Lae;Jeon, You-Jin
    • ALGAE
    • /
    • v.27 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • The thermostability of antioxidant activity of dieckol, a phlorotannin isolated from brown seaweed Ecklonia cava was investigated. The thermostable antioxidant properties of dieckol were evaluated at 30, 60, and $90^{\circ}C$ for 7 days using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities, and comparing its performance to that of ascorbic acid. The intracellular reactive oxygen species (ROS) scavenging activity and apoptotic body formation were investigated using DCF-DA assay and nuclear staining with Hoechst 33342, propidium iodide and flow cytometry. Dieckol treated at different temperatures during 7 days showed stable scavenging activities on towards DPPH and hydroxyl radicals. In addition, dieckol showed a stable protective effect against $H_2O_2$-induced apoptotic body formation in Vero cells. On the other hand, the radical scavenging activities and intracellular ROS scavenging activities of ascorbic acid, used as a positive control, were significantly decreased at $60^{\circ}C$ and $90^{\circ}C$ from on the 4th day and 3rd days, respectively. In conclusion, the results indicated that food grade antioxidant extracts containing dieckol derived from E. cava remain a stable during the temperatures encountered during the processing of food and cosmetics.

The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors

  • Kandasamy, Saveetha;Khan, Wajahatullah;Kulshreshtha, Garima;Evans, Franklin;Critchley, Alan T.;Fitton, J.H.;Stringer, Damien N.;Gardiner, Vicki-Anne;Prithiviraj, Balakrishnan
    • ALGAE
    • /
    • v.30 no.2
    • /
    • pp.147-161
    • /
    • 2015
  • Brown algal extracts have long been used as feed supplements to promote health of farm animals. Here, we show new molecular insights in to the mechanism of action of a fucose containing polymer (FCP) rich fraction from the brown seaweed Ascophyllum nodosum using the Caenorhabditis elegans-Pseudomonas aeruginosa PA14 infection model. FCP enhanced survival of C. elegans against pathogen stress, correlated with up-regulation of key immune response genes such as: lipases, lysozyme (lys-1), saponin-like protein (spp-1), thaumatin-like protein (tlp-1), matridin SK domain protein (msk-1), antibacterial protein (abf-1), and lectin family protein (lfp). Further, FCP caused down regulation of P. aeruginosa quorum sensing genes: (lasI, lasR, rhlI, and rhlR), secreted virulence factors (lipase, proteases, and elastases) and toxic metabolites (pyocyanin, hydrogen cyanide, and siderophore). Biofilm formation and motility of pathogenic bacteria were also greatly attenuated when the culture media were treated with FCP. Interestingly, FCP failed to mitigate the pathogen stress in skn-1, daf-2, and pmk-1 mutants of C. elegans. This indicated that, FCP treatment acted on the regulation of fundamental innate immune pathways, which are conserved across the majority of organisms including humans. This study suggests the possible use of FCP, a seaweed component, as a functional food source for healthy living.

Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish

  • Wang, Lei;Ryu, BoMi;Kim, Won-Suk;Kim, Gwang Hoon;Jeon, You-Jin
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.379-388
    • /
    • 2017
  • In the present study, we enhanced the phenolic content of 70% ethanol extracts of Spirogyra sp. (SPE, $260.47{\pm}5.21$ gallic acid equivalent $[GAE]mg\;g^{-1}$), 2.97 times to $774.24{\pm}2.61GAE\;mg\;g^{-1}$ in the ethyl acetate fraction of SPE (SPEE). SPEE was evaluated for its antiradical activity in online high-performance liquid chromatography-ABTS analysis, and the peaks with the highest antiradical activities were identified as gallic acid derivatives containing gallic acid, methyl gallate, and ethyl gallate. Isolation of ethyl gallate from Spirogyra sp. was performed for the first time in this study. In ultraviolet B (UVB)-irradiated keratinocytes (HaCaT cells), SPEE improved cell viability by 8.22%, and 23.33% and reduced accumulation of cells in the sub-$G_1$ phase by 20.53%, and 32.11% at the concentrations of 50 and $100{\mu}g\;mL^{-1}$, respectively. Furthermore, SPEE (50 and $100{\mu}g\;mL^{-1}$) reduced reactive oxygen species generation in UVB-irradiated zebrafish by 66.67% and 77.78%. This study suggests a protective activity of gallic acid and its derivatives from Spirogyra sp. against UVB-induced stress responses in both in vitro and in vivo models, suggesting a potential use of SPEE in photoprotection.

Evaluation of Antitumor and Antioxidant Activity of Sargassum tenerrimum against Ehrlich Ascites Carcinoma in Mice

  • Patra, Satyajit;Muthuraman, Meenakshi Sundaram;Prabhu, A.T.J. Ram;Priyadharshini, R. Ramya;Parthiban, Sujitha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.915-921
    • /
    • 2015
  • Context: In the last half century, discovering, developing and introducing of clinical agents from marine sources have seen great successes, with examples including the anti-cancer compound trabectedin. However, with increasing need for new anticancer drugs, further exploration for novel compounds from marine organism sources is strongly justified. Objective: The major aim of this study was to evaluate the antitumor and antioxidant potential of Sargassum tenerrimum J.Agardh (Sargassaceae) on Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and Methods: An ethanol extract of S. tenerrimum (EEST) from whole algae was used to evaluate cytotoxicity followed by in vivo assessment of toxicity, using biochemical parameters including hepatic and non-hepatic enzymes. Antioxidant properties were examined in animals bearing EAC treated with daily oral administration of 100-300 mg/kg extract suspension. Results: Antitumor effects of EEST in EAC bearing mice was observed with LD50 1815 mg/kg. Parameters like body weight, tumor volume, packed cell volume, tumor cell count, mean survival time and increase in life span in animals in the EAC bearing animals treated with EEST 300 mg/kg was comparable with control group. Significant differences were also seen with changes in total protein content, hepatic enzymes contents, MDA level, and free radical scavenging enzymes in untreated vs. EEST treated group animals. Conclusions: Evaluation of antioxidant enzymes and hepatic enzymes in the EAC animal model treated with EEST exhibited similar effects as the positive control drug 5-flurouracil. S. tenerrimum extracts contain effective antioxidants with significant antitumor activity.

Anti-inflammatory Effects of Pyropia yezoensis Extract in LPS-stimulated RAW 264.7 cells (방사무늬 김(Pyropia yezoensis) 추출물에 의한 RAW 264.7 대식세포의 항염증 효과)

  • Lee, Ji Young;Choi, Jeong Wook;Lee, Min Kyeong;Kim, Young Min;Kim, In Hye;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.757-764
    • /
    • 2014
  • Many researchers have studied algae as a source of material having potential biological activities, not least because many marine algae extracts have strong antioxidant properties. In this study, we investigated the anti-inflammatory effects of Pyropia yezoensis extract (PYE) on RAW 264.7 cells by measuring nitric oxide (NO), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase activity, inducible NOS (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$), interleukin-$1{\beta}$ (1L-$1{\beta}$), and tumor necrosis factor-alpha (TNF-${\alpha}$). PYE decreased the production of intracellular ROS dose-dependently and increased SOD and catalase activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. PYE significantly suppressed the production of NO and reduced the expression of iNOS, COX-2, and NF-${\kappa}B$. PYE treatment also inhibited the production of IL-$1{\beta}$ and TNF-${\alpha}$ significantly and reduced the phosphorylation of Akt and MAPK significantly in LPS-stimulated RAW 264.7 cells. These results suggest that PYE has potential anti-oxidant and anti-inflammatory activities.