• Title/Summary/Keyword: algae

Search Result 2,584, Processing Time 0.03 seconds

A Numerical Study on the Agglomeration of Algae by the Ultrasonic Wave (초음파를 이용한 미세조류 응집에 관한 수치해석 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In spite of various merit of algae as biofuel, the production cost of algae is a considerable obstacle for commercialization. The concurrent development of essential technologies is needed for the cultivating, harvesting, extracting and energy transformation. The production cost of algae biofuel has still higher than that of the other commercial biofuel. The major research activity has been focused on the cultivating and the research of other processes has been done with relatively lower activity. It is difficult to separate the algae from water because of the similar magnitude of density each other. The agglomeration and extracting of algae with the hybrid technology using ultrasonic wave is rare effect of environmental hazard and also it is appropriate technology for the next generation energy resources. The present research is investigated for the effective separation of algae from water with the ultrasonics wave. The aim of the present research is focused on the establishment of optimal design of algae agglomeration system. For this purpose, the computational fluid dynamic analysis has been conducted in the flow field with ultrasonic wave and algae flow to clarify the mechanism of algae separation by ultrasonic wave.

Development of a Functional Mortar for Algae Growth Restraining by Using Soluble Glass (수용성 유리를 이용한 조류 생장 억제형 기능성 모르타르의 개발)

  • Kim, Jun Hwan;Kang, Hojeong;Choi, Se Young;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.791-799
    • /
    • 2015
  • This study focuses on the algae growth restraining. Many researches on a critical damage from algae growth are published, but it is hard to find how th restrain. Abnormal algae increasing is a problem, because it makes red tides, biodeterioration, etc. Therefore this study aims to decrease the damage from algae growth. Some metal ions have been used microorganism killing materials from old times. Especially, Cu ions are highly effective. Based on these uses of the metal ions, a functional mortar which restrains algae growth is developed. The mortar contains soluble glass which dissolve in water. The soluble glass was made of Cu ions and phosphates. When the soluble glass is dissolved, Cu ions are soaked out stably from the soluble glass. Culture mediums which incubate algae were made to evaluate the developed mortar specimens. Culture mediums were filled with fresh water and sea water. Algae were incubated for fourteen days in culture mediums. The evaluating methods are measuring volume of the dissolved organic carbon and the chlorophyll. Using these two measurements, the mortar specimens are judged that can restrain algae or not. According to the result, the functional mortars of culture medium filled with fresh and sea water shows similar trend. The functional mortar for restraining algae growth performs that's role well.

Marine Algae and Early Explorations in the Upper North Pacific and Bering Sea

  • wynne, Michael J.
    • ALGAE
    • /
    • v.24 no.1
    • /
    • pp.1-29
    • /
    • 2009
  • A synthesis of early exploration and the discovery of marine algae in the upper North Pacific and Bering Sea is presented covering the period from the late 1730s to around 1900. Information is provided about these early efforts to gather natural objects, including seaweeds, and names of these algae are enumerated. The first collections of marine algae in this broad region were those made by steller and Kracheninnkov from the Kamchatka Peninsula,Russia,during the Second Kamchatkan Expedition (1735-1742) and were described by Gmelin (1768). The first known algal collections in Alaska were those made byMerck in his 1790-1791 visits to Unalaska Island during the Billings expedition (1785-1794). British-sponsored expeditions for commercial purposes and for exploration and dis-covery allowed surgeon-naturallist Archibald Menzies to garher seaweeds that Dawson Turner and others worked up back in Europe. Several of the Russian Expeditions during the first half of the 18'!' century had naturalists aboard. the first Russian circumnavigation of the globe (1803-1806), with the ships 'Nadeshda' and 'Neva,' under the com-mand of Capt. Adam von Krusenstern had naturalists Langsdorff, Tilesius, and Horner, all of whom collected sea-weeds. The naturalist Adelbert Chanmisso accompanied the Romanzof Expedition (1815-1818) on the Russian vessel 'Rurik' under the command of Otto von Kotzebue and made collections of algae in the Aleutians as well as in the Kurils and Kamchatka. The Lutke expedition of 1826-1829 consisted of thw ships. Feodor Lutke was in command of the 'Seniavin' with K.H. Mertens aboard as physician-naturalist, and the 'Moller' was under the command of staniukovich accompanied by the naturalist G. Kastalsky. The first American-sponsored scientific expedition (1838-1842) was that commanded by Charles Wilkes, and the algae that were collected were worked up by J.W. Bailey and W.H. Harvey. The Russian naturalist Ilya Voznesenskii spent the period 1839-1849 in Russian Americ (Alaska and northern California) energetically traveling and making numerous collections of natural objects as well as ethno-graphic artefact. His algae were described by F.j. Ruprecht back in St. petersbung. The Swedish scientific vessel, the'Vega' (1878-1880), was under the command of Nordenskiold. The naturalist F.R. Kjellman made algal collections from Port Clarence, Alaska, as well as from bering Island and St. Lawrence Island in the Bering sea. The Harriman Alaskan Expedition in the summer of 1899, with the ship 'George W. Elder,' was sponsored by railroad magnate E.H. Harriman of New York City and had several scientific personnel aborad, including the phycologist De Alton Saunders. Algae were collected in Alaska and Washington. During the same summer of 1899 a scientific expedition organized by the University of California and including W.L. Jepson, L.E. Hunt, A.A Lawson, and W.A. Setchell as participants also visited Alaska and made collections of alage from various locations.

Quality Factors and Functional Components in the Edible Seaweeds I. Distribution of n-3 Fatty Acids in 10 Species of Seaweeds by Their Habitats (식용 해조류의 품질구성요인과 그 기능성 성분 I. 서식지에 따른 10종 해조류의 n-3 지방산의 분포)

  • 정보영;조득문;문수경;변재형
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.621-628
    • /
    • 1993
  • Total lipid contents from 10 species of marine algae(2 green, 5 brown, and 3 red algae) collected from different places in Korea were examined and their fatty acid compositions were compared among species and habitats. Total lipid(TL) was prominent in green laver(about 7.3~10.1%) of the green algae, in sea mustard and seaweed fusiforme(about 3.1~4.8%) of the brown algae and purple laver(about 4.9~6.4%) of the red algae. Sea mustard and seaweed fusiforme collected at Chungmu contained a relatively high level of TL than that at Yosu and Kijang. The TL content of purple laver showed the highest portion in that collected at Nakdong. Green algae comprised the majority of n-3 fatty acids(29.0~66.3%), which mainly consisted of 16 : 4(n-3) (or 16 : 3 (n-3)), 18 : 3(n-3) and 18 : 4(n-3). Brown algae accounted for a low level of n-3 fatty acids(17.9~36.5%) mainly 18 : 4(n-3), 18 : 3(n-3) and 20 : 5(n-3), whereas the brown algae contained a significant level of n-6 fatty acids(7.23~26.5%) such as 20 : 4(n-6) and 18 : 2(n-6). In the case of red algae, the n-3 fatty acids consisted mostly of 20 : 5(n-3) which scored 53% of polyenoic acids in purple laver collected at Nakdong. The proportion of n-3 fatty acids in algae belonging to the same species was higher in algae of high TL contents. Consequently, TL and n-3 fatty acid levels from the seaweeds studied in this paper were different from their habitats.

  • PDF

Epiphytic Algae Growing on Sargassum thunbergii in Southern and Western Coasts of Korea (한국의 남해안과 서해안에 생육하는 지충이(Sargassum thunbergii)의 착생 해조류의 종조성)

  • 김영식;최한길
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.173-177
    • /
    • 2004
  • The number and abundance of epiphytic algae growing on Sargassum thunbergii and their functional forms were examined. Thalli of S. thunbenii were collected on the nine islands of southern coast and at Gyeokpo on the western coast of Korea in summer 2001. A total of 25 species, 6 green (24%), 2 brown (8%), 17 red algae (68%) were identified in the present study. Caulacanthus okamurae, Ulva pertusa, Sphacelaria furcigera were found on the thalli of S. thunbegii that collected at the all regions. Caulacanthus okamurae, Champia bifida and Laurencia venusta grew on the lower parts of S. thunbergii thalli whereas, Polysiphonia spp. attached to the apical parts of the plants. Four functional forms, such as sheet-form (8%), filamentous-form (52%), coarsely branched-form (32%) and articulated-calcareous algal form (8%) were distinguished. The epiphytic algae on the thalli of S. thunbergii are mainly annual opportunistic algae, filamentous-form algae and smaller red algae. Also, most epiphytic seaweeds of S. thunbergii produce and release spores before pseudoperennial host plants are necrotic in late autumn.

Effects of Heated Effluents on the Intertidal Macroalgal Community nearWolseong, the East Coast of Korea (동해안 월성원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.453-461
    • /
    • 2006
  • This study is intended to clarify the structure and seasonal dynamics of warm tolerant benthic marine algal community in Korea. The species composition and biomass of marine algae at the discharge canal of Wolseong nuclear power plant on the East Coast of Korea were investigated seasonally from February 2001 to October 2005. As a result, 43 species (6 blue-green, 8 green, 9 brown and 20 red algae) of marine algae were found at the discharge canal during the past five years. In general, the number of species observed was abundant during winter to summer and less in autumn. Lyngbya confervoides and Enteromorpha compressa always occurred at the discharge canal during the past five years, and Oscillatoria brevis, Padina arborescens and Caulacanthus ustulatus were common species found more than 80% frequency during the study period. Seasonal fluctuations of mean biomass were 2-659 g dry wt m–2 and dominant species in biomass were Caulacanthus ustulatus (contribution to a total biomass proportion 37%), Enteromorpha compressa (26%) and Padina arborescens (24%). Results showed that, in the floristic composition, the green algae occurred as common algal group at the discharge canal of Wolseong nuclear power plant. In the quantitative aspect, however, the red algae such as Caulacanthus ustulatus and Ahnfeltiopsis flabelliformis appeared as predominant group at the discharge canal, in contrast to Kori nuclear power plant where there was a definite green algal dominance. Differences in algal communities developed at the discharge canals of three nuclear power plants on the East Coast of Korea can probably be related to local environmental factors.

Melon Growth Enhancement by Fucoidan and Fucoidan Decomposing Bacteria (후코이단과 후코이단 이용 박테리아의 멜론 성장 촉진 효과 검증)

  • Yang, Sohee;Gil, Yeji;Oh, Heejeong;Koo, Yeonjong
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • BACKGROUND: Marine algae is a productive organism that is consumed as a nutritious food. However, large amounts of unused portions of the algae are incinerated as trash or dumped in the sea, causing pollution. Recycling algae is important for saving resources and conserving the environment. In this study, the fucoidan which is a major carbohydrate of marine algae was tested as a source of fertilizer for farming. METHODS AND RESULTS: The growth rate of the melon was examined after treating fucoidan and the melon growth factors, weight and length of stem were measured. To discover the mechanism of melon growth promotion of fucoidan, bacteria that decomposed fucoidan were isolated from soil and abalone. Bacillus wiedmannii and Stenotrophomonas pavanii were isolated from terrestrial soil and Pseudomonas sp. was isolated from abalone. Among these three bacteria, Pseudomonas sp. had the highest and most specific fucoidan-decomposing activity. When Pseudomonas sp. was treated with fucoidan on melon-growing soil, the growth of melon was relatively improved compared to the treatment with fucoidan alone. CONCLUSION: We found that fucoidan, the main carbohydrate of marine algae, promoted melon growth. Fucoidan-decomposing microorganisms were isolated from terrestrial soil and marine organism, and we found that these bacteria stimulated the effect of melon growth promotion of marine algae. This is the first report that confirms the fertilizer effect of marine algae and shows the use of bacteria with marine algae.

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae;Wi, Jiwoong;Im, Sungoh;Lim, Ka-Min;Lee, Hun-Dong;Jeong, Won-Joong;Kim, Geun-Joong;Kim, Chan Song;Park, Eun-Jeong;Hwang, Mi Sook;Choi, Dong-Woog
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.207-217
    • /
    • 2021
  • An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.