• Title/Summary/Keyword: alga extract

Search Result 79, Processing Time 0.023 seconds

Butyrylcholineesterase(BChE) Inhibitors from a Brown Alga Sargassum sp.

  • Park, Soo-Hee;Ryu, Geon-Seek;Choi, Byoung-Wook;Lee, Bong-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.375.3-375.3
    • /
    • 2002
  • In continuing search for BChE-inhibitory compounds from Korean marine algae. we found a highly potent inhibitory activity in the methanolic extract of Sargassum species. After partition of the MeOH extract between $CHCl_3$ and 30% MeOH. the former layer was subjected to a series of ODS flash chromatography. silica column chromatography. and preparative TLC to afford three compounds (1-3). Detailed structural elucidation of them is in progress. Compound 1 showed potent BChE-inhibitory activity with $IC_{50}$ values of 11 ng/mL. (omitted)

  • PDF

Nitrite Scavenging Activity of Bromophenol Congeners from Symphyocladia latiuscula

  • Park Hye Jin;Lee Hee Jung;Jung Hyun Ah;Choi Jae Sue
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.47-49
    • /
    • 2001
  • Nitrite scavenging activity of a methanol extract of Symphyocladia latiuscula was studied. The methanol extract scavenged the nitrite in a dose-dependent manner. The MeOH extract was then sequentially partitioned with n-hexane, $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$. The scavenging activity of the fractions increased in order of $CH_2Cl_2$, n-hexane, EtOAc, n-BuOH, and $H_2O$. Especially, the activity of the $CH_2Cl_2$ fraction was comparable to that of L-ascorbic acid. Column chromatography of the most active $CH_2Cl_2$ fraction over silica gel yielded three active bromophenol congeners (1-3) which were identified as (2R)-2-(2,3,6-tribromo 4,5-dihydro­xybenzyl) cyclohexanone (1), 2,3,6-tribromo 4,5-dihydroxybenzyl methyl ether (2), and 2,3,6­tribromo 4,5-dihydroxybenzyl alcohol (3) respectively.

  • PDF

Antimicrobial Activity of Brown Alga Eisenia bicyclis against Methicillin-resistant Staphylococcus aureus

  • Eom, Sung-Hwan;Park, Jae-Hong;Yu, Dae-Ung;Choi, Ji-Il;Choi, Jong-Duck;Lee, Myung-Suk;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.251-256
    • /
    • 2011
  • We screened for antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). Methanolic extract of Eisenia bicyclis exhibited anti-MRSA activity according to a disk diffusion assay. To identify the active compound(s), the methanolic extract was further fractionated using hexane, dichloromethane, ethyl acetate, and n-butanol. The ethyl acetate-soluble fraction showed both the greatest anti-MRSA activity and the highest polyphenol content. The minimum inhibitory concentrations of the ethyl acetate fraction ranged from 32 to 64 ${\mu}g$ per mL against methicillin-susceptible S. aureus and MRSA strains. High-performance liquid chromatography analysis revealed that both the methanolic extract and the ethyl acetate soluble fraction contained sizeable quantities of dieckol, which is a known anti-MRSA compound. Thus, these data strongly suggest that the anti-MRSA activity of E. bicyclis may be mediated by phlorotannins such as dieckol.

Antioxidative Effect of Proteolytic Hydrolysates from Ecklonia cava on Radical Scavenging Using ESR and $H_2O_2$-induced DNA Damage

  • Heo, Soo-Jin;Park, Pyo-Jam;Park, Eun-Ju;Cho, So-Mi K.;Kim, Se-Kwon;Jeon, You-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.614-620
    • /
    • 2005
  • The antioxidative effect of Ecklonia cava, a brown marine alga, was investigated on radical scavenging, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl and alkyl radicals, using an electron spin resonance (ESR) technique, and on the inhibition of $H_2O_2$-induced DNA damage using comet assay. E. cava was enzymatically hydrolyzed with five food industrial proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to prepare water-soluble extracts. All the proteolytic hydrolysates exhibited strong dose-dependent radical scavenging activities (above 80%) at a concentration of $2.5\;{\mu}g/mL$. Kojizyme extract (obtained by proteolytic hydrolysation of E. cava with Kojizyme) showed the highest hydroxyl radical scavenging activity of around 98%. In addition, the $H_2O_2$-induced DNA damage was determined using a comet assay, which was quantified by measuring the tail length. Reduction of DNA damage increased with increasing concentrations of Kojizyme extract from E. cava. These results indicated that E. cava has a potential as a valuable natural antioxidative source.

Callophyllis japonica extract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells

  • Kang, Seong-Il;Shin, Hye-Sun;Kim, Hyo-Min;Yoon, Seon-A;Kang, Seung-Woo;Ko, Hee-Chul;Kim, Se-Jae
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.447-454
    • /
    • 2012
  • The anti-obesity potential of an ethanolic extract of the edible red alga Callophyllis japonica extract (CJE) was investigated in mice fed a high-fat diet (HFD). CJE administration into HFD mice revealed suppression of body weight, adipose tissue weight, serum total cholesterol, triglyceride, and glucose levels in a dose-dependent manner. Also, it reduced serum levels of glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and lactate dehydrogenase, as well as the accumulation of fatty droplets in liver tissue. CJE and its ethyl acetate fraction inhibited adipogenesis in 3T3-L1 adipocytes by down-regulating the adipocyte-specific transcriptional regulators. Taken together, these results suggest that CJE reduces obesity in mice fed an HFD by inhibiting lipid accumulation and adipogenesis in the adipose tissues.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction

  • Kim, Seonyoung;Kang, Seok-Seong;Choi, Soo-Im;Kim, Gun-Hee;Imm, Jee-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced $NF-{\kappa}B$ and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment ($100{\mu}g/ml$) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.

Antifungal and synergistic effects of an ethyl acetate extract of the edible brown seaweed Eisenia bicyclis against Candida species

  • Kim, Ki-Hyun;Eom, Sung-Hwan;Kim, Hyo-Jung;Lee, Dae-Sung;Nshimiyumukiza, Ossiniel;Kim, Dongsoo;Kim, Young-Mog;Lee, Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.209-214
    • /
    • 2014
  • With the continuing demand for new solutions in the development of effective and safe candidiasis therapies, we investigated the efficacy of an antifungal agent from the marine brown alga Eisenia bicyclis. The methanolic extract of E. bicyclis evinced potential antifungal activity against Candida species. The ethyl acetate (EtOAc)-soluble extract from E. bicyclis demonstrated the strongest antifungal activity against Candida species among five solvent-soluble extracts. Indeed, the EtOAc-soluble extract showed minimum inhibitory concentrations (MICs) ranging from 4 to 8 mg/mL. Furthermore, the EtOAc-soluble extract considerably reversed high-level fluconazole resistance of Candida species. The MIC values of fluconazole against Candida species decreased substantially (from 64 to $4{\mu}g/mL$) in combination with the MIC of the EtOAc-soluble extract (4 mg/mL). The fractional inhibitory concentration indices of fluconazole ranged from 0.531 to 0.625 in combination with 4, 2, or 1 mg/mL of the EtOAc-soluble extract against Candida isolates, indicating that these combinations exert a marked synergistic effect against Candida isolates. These findings imply that compounds derived from E. bicyclis can be a potential source of natural antifungal agents against Candida species.

Effects of Lactic Acid Bacterial Fermentation on the Antioxidant and Anti-inflammatory Activity of Brown Algae Eisenia bicyclis Extract (대황(Eisenia bicyclis) 추출액의 항산화 및 항염증 활성에 대한 유산균 발효의 영향)

  • Han, Hae-Na;Eom, Sung-Hwan;Kim, Ji-Hoon;Kim, Deok-Hoon;Kim, Song-Hee;Kim, Yunhye;Yeom, Seung-Mok;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.151-157
    • /
    • 2015
  • This study was conducted to evaluate the effect of lactic acid bacterial fermentation on the antioxidant and anti-inflammatory activity of an edible brown alga, Eisenia bicyclis. Lactic acid bacteria were inoculated into and cultivated in E. bicyclis water extract. The antioxidant activity of the extract was assayed before and following fermentation. Antioxidant activity was determined by assaying the levels of radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical and alkyl radical. The lactic acid bacterial fermentation of E. bicyclis extract resulted in enhanced antioxidant activity. The greatest enhancement of antioxidant activity was seen in the DPPH radical scavenging assay, in which E. bicyclis extract was fermented by Pediococcus pentosaceus MBP-34 strain for 12 h. This fermented extract also exhibited higher inhibitory activity (96.66%) on nitric oxide production compared with other lactic acid bacterial fermented extracts or raw extract (189.60%). In conclusion, fermentation by bacterial strain is an attractive strategy for developing value-added food ingredients.

Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages

  • Ryu, BoMi;Choi, Il-Whan;Qian, Zhong-Ji;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong;Jeon, You-Jin;Jang, Chul Ho;Park, Won Sun;Kang, Kyong-Hwa;Je, Jae-Young;Kim, Se-Kwon;Kim, Young-Mog;Ko, Seok-Chun;Kim, GeunHyung;Jung, Won-Kyo
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2014
  • Despite the extensive literature on marine algae over the past few decades, a paucity of published research and studies exists on red algae. The purpose of this study was to evaluate the potential therapeutic properties of the ethanol extract of the red alga Callophyllis japonica against lipopolysaccharide (LPS)-stimulated macrophage inflammation. The C. japonica extract (CJE) significantly inhibited the nitric oxide (NO) production and the induced dose-dependent reduction of the protein and mRNA levels of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the CJE reduced the mRNA levels of inflammatory cytokines, including tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6. We investigated the mechanism by which the CJE inhibits NO by examining the level of mitogen-activated protein kinases (MAPKs) activation, which is an inflammation-induced signaling pathway in macrophages. The CJE significantly suppressed the LPS-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 MAPK. Taken together, the results of this study demonstrate that the CJE inhibits LPS-induced inflammation by blocking the MAPK pathway in macrophages.