• Title/Summary/Keyword: alfalfa seedlings

Search Result 20, Processing Time 0.029 seconds

Effect of Silicon Application on Growth Response of Alfalfa Seedlings Grown under Aluminum Stress in Pots

  • Yoon, Il-Kyu;Kim, Min-Jun;Min, Chang-Woo;Khan, Inam;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Aluminum (Al) stress in acidic pH is known to decrease the growth and productivity of alfalfa. However, not much is known about how the application of silicon (Si) affects the Al stress response in alfalfa. This study was conducted to evaluate the effect of exogenous application of Si on the growth of alfalfa seedlings exposed to Al stress in pots. Alfalfa seedlings grown in pots for 2 weeks were treated either Al stress (pH 4.0, 0.2 mM Al) or Al stress + Si (1 mM) for 5 days, lengths and biomass of shoot and root, and chlorophyll and carotenoid contents in leaf tissues were analyzed respectively. Al stress treatment inhibited shoot and root growth, and decreased fresh and dry weights, and chlorophyll content in leaves, but increased carotenoid content. In contrast, when alfalfa seedlings treated with Al stress combined with Si, delayed growth caused by Al stress of shoot and root of alfalfa seedlings was restored, dry weight was increased and chlorophyll content of leaf tissue was increased, but carotenoid content was decreased. These results suggest that Si has a function of alleviating Al toxicity in alfalfa, of which it exhibits a mitigating effect by a function that overlaps with some of the intracellular functions of carotenoids.

EFFECT OF NITROGEN AND AGE OF ALFALFA (Medicago sativa L. ) SEEDING ON GROWTH AND NODULATION WHEN GROWN UNDER A HOT ENVIRONMENT (고온하에서 질소시비가 근류균을 접종한 Alfalfa의 생육부위에 미치는 영향에 관하여)

  • ;E. H. Jensen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 1987
  • There are differences in opinion as to whether nitrogen fertilizer should be used when establishing alfalfa (Medicago sativa L.). Various reports show that under a hot environment, rhizobia (Rhizobium meliloti) are not as effective in fixing atmospheric nitrogen as they are under moderate temperatures. It is also believed that the addition of nitrogen fertilizer inhibits nodulation of alfalfa seedlings. A replicated experiment was conducted under controlled environmental conditions at the University of Nevada-Reno, Reno, Nevada, USA, to determine the effects of nitrogen application on seedling growth and nodulation of alfalfa grown in a hot environment. Sterile sand was used as the growing media to which a complete nutrient solution minus nitrogen was applied volumetrically to each pot daily. In addition, half of the pots received NH4-$NO_3$, at the rate of 11.2 kg per ha at seeding and at two and four weeks after planting giving a total nitrogen application rate of 33.6 kg per ha during the seven-week experimental period. Rhizobia inoculant (R-12) consisted of a mixture of strains 171-15a, 1682c and 80 PI 265 of (Rhizobium meliloti). Inoculant was applied to the seeds prior to planting and to the sand media at two and four weeks after seeding. Twenty seeds were planted in pots 14.0 cm in diameter and 11.5 cm deep. Plants were thinned to ten plants per pot after emergence and were grown in a controlled environment chamber with a 16-hour light period. Soil temperature at 6 cm depth ranged from 17.4^{\circ}C.$ to 31.1^{\circ}C.$ and had a daily mean of 26.5^{\circ}C.$. Plants were harvested at weekly intervals for seven weeks. Root, shoot and total length, dry weight, volume and number of nodules per plant were determined. Root, shoot, and total length were greater in seedlings grown in soil where nigrogen was applied than that grown in soil to which no nitrogen was applied. The average size of the seedlings as determined by volume and weight was more than two times greater where plants were fertilized with nitrogen. Nodule number per seedling was also greater when nitrogen was applied compared to those which received no nitrogen. The differences were greater as the plants became older. The rhizobia did not fix enough nitrogen for adequate growth of seedlings. This is probably due to high temperature growing conditions that caused the rhizobia to become relatively ineffective as compared to cooler growing conditions. Data suggests it would be desirable to apply nitrogen at seeding when alfalfa is established under hot conditions that occur in mid- or late summer.

  • PDF

Analysis of Aluminum Stress-induced Differentially Expressed Proteins in Alfalfa Roots Using Proteomic Approach

  • Kim, Dong-Hyun;Lee, Joon-Woo;Min, Chang-Woo;Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.137-145
    • /
    • 2022
  • Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.

Extreme pH Reduced Vegetative Growth and Biomass Accumulation in Alfalfa

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Kim, Ki-Yong;Choi, Gi Jun;Lim, Eun A;Rahman, Md. Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.148-152
    • /
    • 2019
  • Soil acidity or alkalinity are serious limitations for crop production. The purpose of this study was to clarify the negative effects of extreme pH stress (low and high) on alfalfa vegetative growth (VG) and biomass accumulation (BA). Two-week-old alfalfa seedlings were exposed to different pH (4.0, 4.5, 7.0, 8.0 and 8.5, respectively) levels for 72 hours. Alfalfa grown at pH 4.0 and 8.5 significantly reduced VG and BA, wherein as neutral pH (7.0) comparably exhibited better growth and biomass yield. These results indicate that extreme acidic or alkaline level are critical limiting factors for growth and biomass yield in alfalfa.

Effect of Nitrogen and Age of Alfalfa ( Medicago sativa L. ) Seeding on Growth and Nodulation When Growth under a Cool Environment (저온하에서 질소시비가 근류균을 접종한 Alfalfa의 생육부위에 미치는 영향에 관하여)

  • ;E. H. Jensen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 1986
  • There are differences in recommendations in the USA as to whether nitrogen fertilizer should be applied when establishing alfalfa (Medicago sativa L). The reason for not applying nitrogen is because some researchers found the addition of nitrogen reduced nodulation of alfalfa plants. A replicated experiment was conducted under controlled environmental conditions at the University of Nevada-Reno, Reno, Nevada, USA, to determine the effects of nitrogen application on seedling growth and nodulation of alfalfa when grown in a cool environment. A sterile sand was used in the growing media to which a complete nutrient solution minus nitrogen was applied volumetrically to each pot daily. Half of the pots received $NH_4NO_3$, at the rate of 11.2 kg/ha, at seeding and two and four weeks after planting, giving a total nitrogen application rate of 33.6 kg/ha. Rhizobia inoculant (R-12) consisted of a mixture of strains 171-15a. 1682c and 80 PI 265 of Rhizobium meliloti. Inoculant was applied to the seeds prior to planting and to the sand media at two and four weeks after seeding. Twenty seeds were planted in pots 14.0 cm in diameter and 11.5 cm deep. Seedlings were thinned after emergence to ten plants per pot. They were grown in a controlled environment chamber with a 16-hour light period. Soil temperatures at 6 cm depth ranged from $5.7^{\circ}C\;to\;21.5^{\circ}C$ and had a daily mean of $16.2^{\circ}C$ Plants were harvested at weekly intervals for seven weeks at which time root, shoot and total length, dry weight, volume and number of nodules per plant were determined. Root, shoot and total length were not affected by nitrogen fertilizer. However, application of nitrogen increased the size of the seedlings as determined by dry weight and volume when compared to plants which were not fertilized. This indicates that rhizobia did not fix enough atmospheric nitrogen to promote good growth. Nitrogen application resulted in significantly more nodules per plant. The effect of nitrogen fertilizer became more apparent as the plant became older. Results of this experiment show there are benefits from applying nitrogen at a low rate when establishing alfalfa under a cool environment.

  • PDF

Stand Density Effects on Herbage Yield and Forage Quality of Alfalfa

  • Min, D.H.;King, J.R.;Kim, D.A.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.929-934
    • /
    • 2000
  • Optimum stand density of alfalfa (Medicago sativa L.) varies with locations and climates. Stand density is one of the factors that determines herbage yield, forage quality and persistence of alfalfa. As establishment costs increase, the question arises whether present population densities are optimum for obtaining maximum herbage yield and forage quality. The objectives of this study were: 1) to determine the optimum plant density for highest herbage yield and forage quality for the dehydrated alfalfa industry under Edmontons climatic conditions in Alberta, Canada; 2) to compare herbage yield and forage quality of the cultivars 'Algonquin' and 'Vernal' grown at a range of stand densities. Alfalfa seedlings of both cultivars were either transplanted at spacings of 6, 10, 15 and 25 cm or direct seeded at the 4.5 cm plant spacings, providing population densities of 494, 278, 100, 45 and $16plants/m^2$. The experimental design was a randomized complete block with a split-plot arrangement having three replicates; the main plots consisted of two alfalfa cultivars Algonquin and Vernal, and the sub-plots were the five population densities. The cultivar Vernal had significantly higher annual yield than did the cultivar Algonquin. There was no significant effect of plant density on herbage yield. There was no difference in crude protein (CP) between the two cultivars. At the first cut, there was a significant quadratic effect of plant density on CP content and the greatest CP occurred at the 100 plants/m2 density. Crude protein was not affected by plant density at the second cut. Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by plant density. The cultivar Algonquin usually had a lower ADF and NDF than cultivar Vernal. In conclusion, high population densities ($278plants/m^2$ or more) of alfalfa did not improve herbage yield and forage quality compared with low plant population densities ($100plants/m^2$ or less) of alfalfa.

Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.3
    • /
    • pp.243-247
    • /
    • 2016
  • Arsenic (As) is a toxic element that easily taken up by plants root. Several toxic forms of As disrupt plant metabolism by a series of cellular alterations. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in alfalfa roots in response to As stress. Two-week-old alfalfa seedlings were exposed to As treatment for 6 hours. DEGs were screened from As treated samples using the ACP-based technique. A total of six DEGs including heat shock protein, HSP 23, plastocyanin-like domain protein162, thioredoxin H-type 1 protein, protein MKS1, and NAD(P)H dehydrogenase B2 were identified in alfalfa roots under As stress. These genes have putative functions in abiotic stress homeostasis, antioxidant activity, and plant defense. These identified genes would be useful to increase As tolerance in alfalfa plants.

Extraction and Bioassay of Allelochemicals in Jerusalem Artichoke

  • Sungwook Chae;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.309-316
    • /
    • 2001
  • Helianthus tuberosus has been known to inhibit the growth of weeds and other plants sharing its habitat. This study was conducted to identify the allelochemicals of Helianthus tuberosus which were extracted with water and solvents. Aqueous extracts of leaf, stem, root, tuber and tuber peel of Helianthus tuberosus except tuber did not show significant differences in phytotoxicity to alfalfa seedlings. It was considered that Helianthus tuberosus contained fewer or less potential water-soluble substances that were toxic to alfalfa. Methanol extract of leaves of Helianthus tuberosus was sequentially partitioned in increasing polarity with n-hexane, ethylacetate and n-butanol. Each extract had a yield of 148, 12, 15.7 and 9.5g, respectively. Inhibitory effects on germination of alfalfa seeds treated with four fractions were not significantly different. But the significant reductions on hypocotyl length were observed for all the solvent extracts. Among the four fractions, the ethylacetate fraction showed the most significant inhibition effect on bioassay with alfalfa. Further separation of the active ethylacetate fraction by open column chromatography led to the 25 subfractions. In bioassay of each sub-fraction with alfalfa seeds, sub-fraction No. 13 showed the most inhibitory effect on seedling growth. $^1$H NMR and gas chromatography-mass spectrometry analysis revealed that sub-fraction No. 13 was the mixture of straight-chain saturated fatty acids.

  • PDF

Preference of Adult Alfalfa Weevil, Hypera postica (Gyllenhal), (Coleoptera: Curculionidae), to Different Seedlings of Upland Crops (알팔파바구미 성충의 밭작물 유식물에 대한 기주선호성)

  • Bae, Soondo;Kim, Hyunju;Mainali, Bishwo Prasad;Yoon, Youngnam;Lee, Geonhwi
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • Occurrence of adult alfalfa weevil, Hypera postica Gyllenhal, was observed at Chinese milk vetch field, and host plant preference of its $1^{st}$ generation adult was observed at greenhouse and Chinese milk vetch field. The over-wintered adult of the weevil appeared from late March and peaked in mid April while the $1^{st}$ generation adult appeared from late April and peaked in late May. However, the occurrence of over-wintered adult was very low contrary to the $1^{st}$ generation adult which was very high with some variations among observed years. In greenhouse, host plant preference of $1^{st}$ adult generation of H. postica was evaluated with 11 different seedlings. H. postica was found to occur in significantly higher number on Chinese cabbage seedling followed by soybean, and kale at 7 days after releasing(DAR). Corn, crown daisy and sorghum were found to be the least preferred with nil occurrence of the weevil. Seedlings damage rate by H. postica feeding at 7DAR was the most severe on Chinese cabbage(60.0%) followed by soybean(50.0%), kale(30.0%), foxtail millet(16.7%), proso millet(13.3%) and lettuce(3.3%) significantly. Also, seedlings damage rate by H. postica at 7DAR in Chinese milk vetch field had shown the similar trend with Chinese cabbage(46.7%), soybean(43.3%), kale(23.3%), foxtail millet(13.3%) and proso millet(13.3%) in greenhouse significantly. Accordingly, results on host plant preference of H. postica from this study can be used as a basic information for safe cultivation of upland crops at near or around green manure crop field.