• Title/Summary/Keyword: alcohol oxidase promoter

Search Result 11, Processing Time 0.028 seconds

Pichia pastoris 유가식 배양을 이용한 재조합 HBsAg 생산에서 sorbitol이 미치는 영향

  • Lee, Gyeong-Hun;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.247-250
    • /
    • 2002
  • Pichia pastoris, a methylotrophic yeast widely used for the production of heterologous proteins, was used to produce Hepatitis B surface antigen (HBsAg) under the control of the strong, tightly-regulated alcohol oxidase promoter. It is highly induced during the growth on methanol, but the presence of non-methanol carbon sources such as glycerol and glucose repressed fully the expression of alcohol oxidase. In this study, glycerol and sorbitol feedings for the expression of the recombinant HBsAg were compared to examine the potential of sorbitol as a less repressive carbon source in fed-batch fermentation. The sorbitol feeding enhanced the production yield by 12% compared to that in glycerol feeding, although the cell concentration was lower.

  • PDF

Effect of Various Additives on the Production of Recombinant HBsAg during Methanol Induction in Pichia pastoris (Pichia pastoris에서 메탄올 유도시 첨가물이 재조합 HBsAg 생산에 미치는 영향)

  • Lee, Kyoung-Hoon;Lim, Sang-Min;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.260-266
    • /
    • 2006
  • Methanol induction conditions with various additives for the enhanced production of recombinant hepatitis B surface antigen(HBsAg) were investigated in Pichia pastoris, which can utilize methanol as a carbon source and produce recombinant proteins under the control of strong, tightly-regulated alcohol oxidase(AOX) promoter. The presence of non-methanol carbon sources such as glycerol and glucose fully repressed the expression of AOX promoter. Various additives were tested to improve the production of recombinant protein and it was found that sorbitol could be a good carbon source during methanol induction period. An optimized concentration of amino acid mixture enhanced the production of HBsAg significantly. Pluronic F-68, a non-ionic surfactant, also improved the production of HBsAg without inhibiting cell growth. Addition of oleic acid at 0.01%(v/v) during the induction period showed positive effect on the production of HBsAg. Finally, 1.2%(v/v) of trace salts enhanced the production of HBsAg 1.9 times compared to that of control culture.

Study on recombinant expression of Phospholipase C gene (plc) in methylotrophic yeast Pichia pastoris and its properties

  • Seo, Kook-Hwa;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-194
    • /
    • 2003
  • The phospholipase C (PLC) hydrolyzes the polar head groups such as phosphocholine or phosphoethanolamine residues esterified at the sn-3 position of phospholipids. Pichia pastoris can utilize methanol as a carbon source and produce recombinant proteins under the control of the strong, tightly-regulated alcohol oxidase (AOX) promoter. In this study, we developed recombinant P. pastoris system for PLC expression and analyzed PLC activity.

  • PDF

Methylotrophic yeast Pichia pastoris를 이용한 재조합 phospholipase C (PLC) 생산 및 특성 연구

  • Seo, Guk-Hwa;Jeong, Sang-Yun;Lee, Jong-Il;Bornscheuer, Uwe T.
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.233-235
    • /
    • 2003
  • The phospholipase C (PLC) hydrolyzes the polar head groups such as phosphocholine or phosphoethanolamine residues esterified at the sn-3 position of phospholipids. Pichia pastoris can utilize methanol as a carbon source and produce recombinant proteins under the control of the strong, tightly-regulated alcohol oxidase (AOX) promoter. In this study, we developed recombinant P. pastoris system for the high productivity of PLC and analyzed PLC activity.

  • PDF

High-level Secretory Expression of Recombinant $\beta$-Agarase from Zobellia galactanivorans in Pichia pastoris (Pichia pastoris에서 Zobellia galactanivorans 유래 재조합 $\beta$-Agarase의 고효율 분비생산)

  • Seok, Ji-Hwan;Park, Hee-Gyun;Lee, Sang-Hyeon;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Jong-Hyun;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • The gene encoding $\beta$-agarase (agaB) which hydrolyzes $\beta$-1,4 linkages of agarose from Zobellia galactanivorans was cloned and fused to Saccharomyces cerevisiae mating factor alpha-1 secretion signal ($MF{\alpha}1$), in which the transcription of $MF{\alpha}1$-AgaB was under the control of AOX1 (alcohol oxidase 1, methanol inducible) promoter. The constructed plasmid pPIC-AgaB (9 kb) was integrated into HIS4 gene locus of Pichia pastoris genome. Successful integration was confirmed by performing colony PCR. The transformed cells showed red halos around its colonies in methanol agar plate by adding iodine solution, indicating the active expression of agaB in P.pastoris. By SDS-PAGE and zymographic analysis, the molecular weight of $\beta$-agarase was estimated to be a 53 kDa and about 15% N-linked glycosylation was occurred. The activity of extracellular $\beta$-agarase reached 1.34, 1.42 and 1.53 units/mL by inducing 0.1, 0.5, and 1% methanol, respectively, at baffled flask culture of P.pastoris GS115/pPIC-AgaB for 48 hr. Most of the enzyme activity was found in the extacellular fraction and the secretion efficiency showed 98%. Thermostability of recombinant $\beta$-agarase was also increased by glycosylation.

Enhanced and Targeted Expression of Fungal Phytase in Saccharomyces cerevisiae

  • LIM, YOUNG-YI;EUN-HA PARK;JI-HYE KIM;SEUNG-MOON PARK;HYO-SANG JANG;YOUN-JE PARK;SEWANG YOON;MOON-SIK YANG;DAE-HYUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.915-921
    • /
    • 2001
  • Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. In order to express a high level of fungal phytase in Saccharomyces cerevisiae, various expression vectors were constructed with different combinations of promoters, translation enhancers, signal peptides, and terminator. Three different promoters fused to the phytase gene (phyA) from Aspergillus niger were tested: a galactokinase (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, and yeast hybrid ADH2-GPD promoter consisting of alcohol dehydrogenase II (ADH2) and a GPD promoter. The signal peptides of phytase, glucose oxidase (GO), and rice amylase 1A(RAmy1A) were included. Plus, the translation enhancers of the ${\Omega}$ sequence and UTR70 from the tobacco mosaic virus (TMV) and spinach, respectively, were also tested. Among the recombinant vectors, pGphyA06 containing the GPD promoter, the ${\Omega}$ sequence, RAmy1A, and GAL7 terminator expressed the highest phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase was also performed by inserting an endoplasmic reticulum (ER) retention signal, KDEL sequence, into the C-terminus of the phytase within the vector pHphyA-6. It appeared that the KDEL sequence directed most of the early expression of phytase into the intracellular compartment yet more than $60\%$ of the total phytase activity was still retained within the cell even after the prolonged (>3 days) incubation of the transformant. However, the intracellular enzyme activity of the transformant without a KDEL sequence was as high as that of the extracellular one, thereby strongly suggesting that the secretion of phytase in S. cerevisiae appeared to be the rate-limiting step for the expression of a large amount of extracellular recombinant phytase, when compared with other yeasts.

  • PDF

Fusarium graminearum의 ZEB2 동형단백질에 의한 지랄레논 생합성 자가조절

  • Park, Ae Ran;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.27-27
    • /
    • 2016
  • The ascomycete fungus Fusarium graminearum is the most common pathogen of Fusarium head blight (FHB), a devastating disease for major cereal crops worldwide. FHB causes significant crop losses by reducing grain yield and quality as well as contaminating cereals with trichothecenes and zearalenone (ZEA) that pose a serious threat to animal health and food safety. ZEA is a causative agent of hyperestrogenic syndrome in mammals and can result in reproductive disorders in farm animals. In F. graminearum, the ZEA biosynthetic cluster is composed of four genes, PKS4, PKS13, ZEB1, and ZEB2, which encode a reducing polyketide synthase, a nonreducing polyketide synthase, an isoamyl alcohol oxidase, and a transcription factor, respectively. Although it is known that ZEB2 primarily acts as a regulator of ZEA biosynthetic cluster genes, the mechanism underlying this regulation remains undetermined. In this study, two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum were characterized. It was revealed that ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggered the induction of both ZEB2L and ZEB2S transcription. In ZEA producing condition, the expression of ZEB2S transcripts via alternative promoter usage was directly or indirectly initiated by ZEA. Physical interaction between ZEB2L and ZEB2L as well as between ZEB2L and ZEB2S was observed in the nucleus. The ZEB2S-ZEB2S interaction was detected in both the cytosol and the nucleus. ZEB2L-ZEB2L oligomers activated ZEA biosynthetic cluster genes, including ZEB2L. ZEB2S inhibited ZEB2L transcription by forming ZEB2L-ZEB2S heterodimers, which reduced the DNA-binding activity of ZEB2L. This study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production.

  • PDF

Production of Recombinant Humanized Anti-HBsAg Fab Fragment from Pichia pastoris by Fermentation

  • Deng, Ning;Xiang, Junjian;Zhang, Qing;Xiong, Sheng;Chen, Wenyin;Rao, Guirong;Wang, Xunzhang
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.294-299
    • /
    • 2005
  • In this report, we describe the high-yield secretory expression of the recombinant human anti-HBsAg Fab fragment from Pichia pastoris that was achieved by co-integration of the genes encoding the heavy and light chains (both under the control of alcohol oxidase promoter) into the genome of the yeast cells. The fed-batch fermentations were carried out in a 5 L scale. Both chains of the Fab were successfully expressed upon methanol induction. The absorbance ($OD_{600}$) of the broth can reach 350~500 at the end of fed-batch phase. After the induction, the expression level of the recombinant Fab (soluble) reached 420~458 mg/L. The recombinant Fab fragment was purified from the crude culture supernatant by ion exchange chromatography and the purity of the recombinant Fab fragment was over 95%. The affinity activities of the crude fermentation supernatant and the purified Fab were analyzed by indirect ELISA, which showed that the purified recombinant Fab fragment had high affinity activity with hepatitis B surface antigen.

Secretion of Pem-CMG, a Peptide in the CHH/MIH/GIH Family of Penaeus monodon, in Pichia pastoris Is Directed by Secretion Signal of the α-Mating Factor from Saccharomyces cerevisiae

  • Treerattrakool, Supattra;Eurwilaichitr, Lily;Udomkit, Apinunt;Panyim, Sakol
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.476-481
    • /
    • 2002
  • The CHH/MIH/GIH peptide family of black tiger prawn (Paneaus monodon) is important in shrimp reproduction and growth enhancement. In this study, the cDNA that encodes the complete peptide that is related to the CHH/MIH/GIH family (so-called, Pem-CMG) in the eyestalk of P. monodon was successfully expressed in a methylotrophic yeast Pichia pastoris under the control of an alcohol oxidase promoter. In order to obtain the secreted Pem-CMG, a secretion signal of either the Saccharomyces cerevisiae $\alpha$-factor or Pem-CMG was employed. The results demonstrated that ${\alpha}Pem$-CMG, either with (${\alpha}2EACMG$) or without (${\alpha}CMG$) the Glu-Ala repeats, was secreted into the medium, while Pem-CMG with its own secretion signal failed to be secreted. The total protein amount that was secreted from the transformant that contained either ${\alpha}2EACMG$ or ${\alpha}CMG$ was approximately 60 mg/l and 150 mg/l, respectively. The N-terminus of the Pem-CMG peptide of both ${\alpha}2EACMG$ and ${\alpha}CMG$ was correctly processed. This produced the mature Pem-CMG peptide.

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.