• Title/Summary/Keyword: alcohol dehydrogenase (ADH)

Search Result 219, Processing Time 0.026 seconds

Expression of the Apx Toxins of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae and Its Induction of Immune Response in Mice

  • Park Seung-Moon;Choi Eun-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yoo Han-Sang;Choi Woo Bong;Park Bong-Kyun;Kim Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.362-366
    • /
    • 2005
  • Actinobacillus pleuropneumoniae is an important pig pathogen, which is responsible for swine pleuropneumonia, a highly contagious respiratory infection. To develop subunit vaccines for A. pleuropneumoniae infection, the Apx toxin genes, apxI and apxII, which are thought to be important for protective immunity, were expressed in Saccharomyces cerevisiae, and the induction of immune responses in mice was examined. The apxI and apxII genes were placed under the control of a yeast hybrid ADH2-GPD promoter (AG), consisting of alcohol dehydrogenase II (ADH2) and the GPD promoter. Western blot analysis confirmed that both toxins were successfully expressed in the yeast. The ApxIA and ApxIIA-specific IgG antibody response assays showed dose dependent increases in the antigen-specific IgG antibody titers. The challenge test revealed that ninety percent of the mice immunized with ApxIIA or a mixture of ApxIA and ApxIIA, and sixty percent of mice immunized with ApxIA survived, while none of those in the control groups survived longer than 36 h. These results suggest that vaccination of the yeast ex­pressing the ApxI and ApxII antigens is effective for the induction of protective immune responses against A. pleuropneumoniae infections in mice.

Construction of an Industrial Brewing Yeast Strain to Manufacture Beer with Low Caloric Content and Improved Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;Liu, Xi-Feng;Guo, Xue-Na;He, Xiu-Ping;Wense, Pierre Christian;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.767-774
    • /
    • 2010
  • In this study, the problems of high caloric content, increased maturation time, and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, ${\alpha}$-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter (PGK1), while disrupting the gene coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.26 U/ml compared with host strain T1 (12.36 U/ml) and wild-type industrial yeast strain YSF5 (10.39 U/ml), respectively. European Brewery Convention (EBC) tube fermentation tests comparing the fermentation broths of TQ1 with T1 and YSF5 showed that the real extracts were reduced by 15.79% and 22.47%; the main residual maltotriose concentrations were reduced by 13.75% and 18.82%; the caloric contents were reduced by 27.18 and 35.39 calories per 12 oz. Owing to the disruption of the ADH2 gene in TQ1, the off-flavor acetaldehyde concentrations in the fermentation broth were 9.43% and 13.28%, respectively, lower than that of T1 and YSF5. No heterologous DNA sequences or drug resistance genes were introduced into TQ1. Hence, the gene manipulations in this work properly solved the addressed problems in commercial beer manufacture.

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;He, Xiu-Ping;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1539-1545
    • /
    • 2010
  • In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Effect of Circadian Rhythms on the Xylene Metabolizing Enzyme Activities in Rats (Xylene 대사 효소 활성에 미치는 주.야 시차의 영향)

  • 이혜자;윤종국
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.10-16
    • /
    • 2001
  • To evaluate an effect of circadian variation on the xylene metabolizing enzyme activities, 50% m-xylene in olive oil(0.25 $m\ell$/100g body weight) was intraperitoneally administered to the rats every other day for 6 days both in the night; 24:00 and the day; 12:00. Then animals were sacrigiced at 8hr after last injection of m-xylene. Hepatic microsomal cytochrome p450 contents were more increased both in control and xylene treated rats of night phase than those of day phase. But the activity of hepatic alcohol dehydrogenase(ADH) in control of night phase showed the similar value with that in those of day phase and xylene treated rats of day phase showed an increasing tendency of hepatic ADH activity as those of night phase showing similar activity. Furthermore, control rats of night phase than those of day phase. And by xylene treatment, enzyme activities of rats of day phase were higher tendency in rats of control but those of night phase were somewhat inhibited. Besides, xylene-treated animals of night phase showed increasing tendency of urinary methylhippuric acid concentration compared with those of day phase. On the other hand, liver weight per body weight(%), hepatic lipid peroxide content and serum xanthine oxidase activity were higher in night phase. And the activities of hepatic oxygen free radical metabolizing enzymes such as xanthine oxidase, gluthathione S-transferase, and xylene-treated rats of night phase than those of day phase. In conclusion, it can be hypothesized on the basis of the results that the accumulation rate of m-xylene intermediate metabolite, i.e. m-methylbenzaldehyde in liver tissus may be higher in night phase than in day phase and it may be responsible for higher liver toxicity in bight phase than in day phase.

  • PDF

Herbal formula MJY2018 protects against Alcohol-induced liver injury mice model (알코올 유발 간 손상 마우스 모델에서 복합 추출물 MJY2018의 간 보호 및 항산화 효과)

  • Kim, Kwang-Youn;Park, Kwang-Il;Cho, Won-Kyung;Yang, Ju-Hye;Ma, Jin-Yeul
    • Herbal Formula Science
    • /
    • v.28 no.2
    • /
    • pp.189-198
    • /
    • 2020
  • Objectives : This study investigated the liver-protective effects of MJY2018, a Herbal formula, against alcoholic fatty liver disease and anti-oxidative effects. Methods : Its effects were investigated in an alcoholic fatty liver disease model in male C57BL/6 mice, which were fed Lieber-DeCarli liquid diet containing ethanol. MJY2018 (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day) were orally administered daily in the alcoholic fatty liver disease mice for 16 days. Results : The results indicate that MJY2018 promotes hepatoprotection by significantly reducing aspartate transaminase (AST) and alanine transaminase (ALT) levels as indicators of liver damage in the serum. Furthermore, MJY2018 reduced accumulation of triglyceride and total cholesterol, increased levels of superoxide dismutase (SOD) and glutathione (GSH) in the livers of the alcoholic fatty liver disease mice model. Additionally, it improved the serum alcohol dehydrogenase (ADH) activity. Conclusions : These results indicate that MJY2018 were effective in improving and protecting oxidative stress and alcoholic liver disease.

Effect of Herbal Extracts Mixtures on Antioxidant System in Chronic Enthanol-treated Rats

  • Kim, Mok-Kyung;Won, Eun-Kyung;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.226-234
    • /
    • 2006
  • Disturbance of antioxidant system is very common in chronic alcoholics and herbal or natural products with antioxidant activity have been used for its treatment. This study was to investigate the effect of Vitis vinifera extract(V), Schisandra chinensis extract(S), Taraxacum officinale extract(T), Gardenia jasminoides extract(G), Angelica acutiloba extract(A) and Paeonia japonica extract(P), and their combinations on the antioxidant and ethanol oxidation system. Male Sprague-Dawley rats were subjected to Lieber-DeCarli ethanol liquid diet(ED) and were then given different herbal extract mixtures for 6 weeks including VST(V 100+S 150+T 150mg/kg/day), VSG(V 100+S 150+G 150mg/kg/day), VTG(V 100+T 150+G 150mg/kg/day), and VAP(V 100+A 150+P 150mg/kg/day). When the activity of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) were compared between ED only group and herbal extracts treatment group, the differences were statistically significant. Phase I and II(glutathione-S-transferase, phenol sulfatransferase) enzyme activities were found to be significantly higher in the VAT treatment group compared to the ED group. Herbal extracts not only repressed the ethanol-induced elevation of malondialdehyde level, but also protected against ethanol-induced decrease in glutathione content, glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. The administration of the herbal extracts was found to be effective in eliminating lipid-peroxides induced by long-term consumption of alcohol by activating various enzyme systems and physiological active compound formation system. After a chronic consumption of alcohol, Angelica Radix protected the liver via activating the ethanol-metabolism enzyme system, and Paeoniae Radix via activating the ethanol-metabolism enzyme and the phase I, II-metabolism enzyme system. Taraxaci Herba was also effective in liver protection via activating the ethanol-metabolism enzyme system and the phase I, II-metabolism enzyme system, Gardeniae Fructus via activating the phase II-metabolism enzyme system and the anti-oxidation system enzyme, and Schisandra Fructus and a grapestone via activating the anti-oxidation system. Our data suggest that these herbal extracts may be useful as a health functional food or new drug candidate for fatty liver and hepatotoxicity induced by chronic alcohol consumption.

Effect of the Saponin Fraction of Korean Ginseng on the Ethanol Metabolism in the Animal Body

  • Joo, Chung-No;Kwak, Hahn-Shik
    • Proceedings of the Ginseng society Conference
    • /
    • 1987.06a
    • /
    • pp.47-58
    • /
    • 1987
  • Ethanol exerts different effects on hepatic cellular metabolism, depending mainly on the duration of its intake. In the presence of ethanol following an acute load, a number of hepatic functions are inhibited, including lipid oxidation and microsomal drug metabolism. In its early stages, chronic ethanol consumption produces adaptive metabolic changes in the endoplasmic reticulum which result in increased metabolism of ethanol and drugs and accelerated lipoprotein production. Prolongation of ethanol intake may result in injurious hepatic lesions such as alcoholic hepatitis and cirrhosis A number of such metabolic effects of ethanol are directly linked to the two major products of its oxidation; hydrogen and acetaldehyde. The excess hydrogen from ethanol unbalances the liver cell's chemistry. In the presence of excess hydrogen ions the process is turned in a different direction. In this study, it was attempted to observe the effect of ginseng saponins on alcohol Oehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and microsomal ethanol oxidizing system(MEOS) in vivo as well as in vitro. Furthermore, the effect of ginseng saponin on the hydrogen balance in the liver and the hepatic cellular distribution of (1-14C) ethanol, its incorporation into acetaldehyde and lipids was also investigated. It seemed that ginseng saponin stimulated the above enzymes and other related enzymes in ethanol metabolism, resulting in a rapid removal of acetaldehyde and excess hydrogen from the animal body,

  • PDF

The Effect of Saponin Fraction of Panax ginseng C.A. Meyer on the Liver of Ethanol Administered Rat (인삼사포닌 분획이 에탄올을 투여한 쥐의 간세포에 미치는 영향)

  • 주충노;태건식
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1985
  • Preventive effect of ginseng saponin fraction against ethanol intoxication of the liver of rats fed width 12% ethanol instead of water for 6 days was investigated. Control group was dosed 12% ethanol instead of water (free access) for 6 days and test group was dosed 0.1% ginseng saponin fraction in the 12% ethanol instead of water for 6 days. Normal rats was given only water freely. It was observed that the activities of alcohol dehydrogenase (ADH) and Microsomal ethanol oxidizing system (MEOS) of both control and test groups were higher than those of normal group while the activity of aldehyde dehydrogenate (ALDH) of control and test groups were lower than that of normal rats, However, the ALDH activity decrease of test group was much less than that of control groups. Electron micrograph showed that severely swollen and disrupted mitochondria and dilated and vesiculated ER can be seen in control group while dilated or vesiculated ER are very few and swollen or disrupted mitochondria can not be seen in test group. From the above experimental result, it seems that ginseng saponin might stimulate ethanol oxidation and the removal of acetaldehyde resulting in the decrease of ethanol intoxication of the liver.

  • PDF

Quality Characteristics of Muffins Added with Moringa (Moringa oleifera Lam.) Leaf Powder (모링가 잎 분말을 첨가한 머핀의 품질 특성)

  • Jung, Kyung Im
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.872-879
    • /
    • 2016
  • This study evaluated the quality characteristics of muffins prepared with different amounts (0%, 1%, 3%, 5%, and 7%) of moringa (Moringa oleifera Lam.) leaf powder (MLP). The weight of muffins increased as the amount of MLP increased. The height and pH of muffins significantly decreased as the amount of MLP increased (P<0.05). The moisture content was higher in groups containing 3% MLP. The hardness was higher at 0% MLP. Cohesiveness decreased as the amount of MLP increased (P<0.05), whereas springiness was not significantly different among all samples. Chewiness and brittleness decreased with increasing MLP concentration. Substitution of wheat flour with MLP yielded muffins with a higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and total polyphenol content (P<0.05). Alcohol dehydrogenase and acetaldehyde dehydrogenase activity significantly increased upon addition of MLP (P<0.05). In the sensory evaluation, appearance scores of muffins were higher in groups containing 7% MLP, whereas taste, flavor, texture, and overall acceptability scores were lowest in muffins with 7% MLP. Therefore, up to 3% MLP can be incorporated into muffins to satisfy the sensory quality and functional needs of the consumer. Furthermore, this study proposes the possibility of development of various products using MLP.