Expression of the Apx Toxins of Actinobacillus pleuropneumoniae in Saccharomyces cerevisiae and Its Induction of Immune Response in Mice

  • Park Seung-Moon (Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Choi Eun-Jin (Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Kwon Tae-Ho (Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Jang Yong-Suk (Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Yoo Han-Sang (Department of Infectious Disease, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Choi Woo Bong (Department of Biotechnology and Bioengineering, Dongeui University) ;
  • Park Bong-Kyun (Department of Veterinary Virology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University) ;
  • Kim Dae-Hyuk (Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
  • Published : 2005.08.01

Abstract

Actinobacillus pleuropneumoniae is an important pig pathogen, which is responsible for swine pleuropneumonia, a highly contagious respiratory infection. To develop subunit vaccines for A. pleuropneumoniae infection, the Apx toxin genes, apxI and apxII, which are thought to be important for protective immunity, were expressed in Saccharomyces cerevisiae, and the induction of immune responses in mice was examined. The apxI and apxII genes were placed under the control of a yeast hybrid ADH2-GPD promoter (AG), consisting of alcohol dehydrogenase II (ADH2) and the GPD promoter. Western blot analysis confirmed that both toxins were successfully expressed in the yeast. The ApxIA and ApxIIA-specific IgG antibody response assays showed dose dependent increases in the antigen-specific IgG antibody titers. The challenge test revealed that ninety percent of the mice immunized with ApxIIA or a mixture of ApxIA and ApxIIA, and sixty percent of mice immunized with ApxIA survived, while none of those in the control groups survived longer than 36 h. These results suggest that vaccination of the yeast ex­pressing the ApxI and ApxII antigens is effective for the induction of protective immune responses against A. pleuropneumoniae infections in mice.

Keywords

References

  1. Sebunya, T. N. and J. R. Saunders (1983) Haemophilus pleuropneumoniae infection in swine J. Am. Vet. Med. Assoc. 182: 1331-1337
  2. Bosse, J. T., H. Janson, B. J. Sheehan, A. J. Beddek, A. N. Rycroft, J. S. Kroll, and P. R. Langford (2000) Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microb. Infect. 4: 225-235 https://doi.org/10.1016/S1286-4579(01)01534-9
  3. Frey, J. (1995) Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol. 3: 257-261 https://doi.org/10.1016/S0966-842X(00)88939-8
  4. Dubreuil, J. D., M. Jacques, K. R. Mittal, and M. Gottschalk (2000) Actionbacillus pleuropneumoniae surface polysaccharides: Their role in diagnosis and immunogenicity. Anim. Health. Res. Rev. 1: 73-93 https://doi.org/10.1017/S1466252300000074
  5. Anderson, C., A. A. Potter, and G. F. Gerlach (1999) Isolation and molecular characterization of spontaneously occurring cytolysin-negative mutants of Actinobacillus pleuropneumoniae serotype 7. Infect. Immun. 59: 4110-4116
  6. Fuller, T. E., S. Martin, J. F. Teel, G. R. Alaniz, M. J. Kennedy, and D. E. Lowery (2000) Identification of Actinobacillus pleuropneumoniae virulence genes using signaturetagged mutagenesis in a swine infection model. Microb. Pathog. 29: 39-51 https://doi.org/10.1006/mpat.2000.0364
  7. Prideaux, C. T., C. Lenghaus, J. Krywult, and A. L. M. Hodgson (1999) Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infect. Immun. 67: 1962-1966
  8. Tascon, R. I., J. A. Vanquez-Boland, C. B. Gutierrez- Martin, I. Rodriguez-Barbosa, and E. F. Rodriguez-Ferri (1994) The RTX haemolysin ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: Evidence from mutational analysis. Mol. Microbiol. 14: 207-216 https://doi.org/10.1111/j.1365-2958.1994.tb01282.x
  9. Bosse, J. T., H. Janson, B. J. Sheehan, A. J. Beddek, A. N. Rycroft, J. S. Kroll, and P. R. Langford (2002) Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Micro. Infect. 4: 225-235 https://doi.org/10.1016/S1286-4579(01)01534-9
  10. Seah, J. N., J. Frey, and J. Kwang (2002) The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect. Immun. 70: 6464-6467 https://doi.org/10.1128/IAI.70.11.6464-6467.2002
  11. Fenwick, B. and S. Henry (1994) Porcine pleuropneumonia. J. Am. Vet. Med. Assoc. 204: 1334-1340
  12. Tascon, R. I., J. A. Vazquez-Boland, C. B. Gutierrez-Martin, J. I. Rodriguez-Barbosa, and E. F. Rodriguez-Ferri (1996) Virulence factors of the swine pathogen Actinobacillus pleuropneumoniae. Microbiologia 12: 171-184
  13. Satran, P., K. Nedbalcova, and Z. Kucerova (2003) Comparison of protection efficacy of toxoid and whole-cell vaccines against porcine pleuropneumonia caused by endotracheal infection with Actinobacillus pleuropneumoniae. Acta. Veterinaria. Brno. 72: 213-219 https://doi.org/10.2754/avb200372020213
  14. Rombaut, B. and J. P. M. Jore (1997) Immunogenic noninfectious polio subviral particles synthesized in Saccaromyces cerveseae. J. Gen. Virol. 78: 1829-1832 https://doi.org/10.1099/0022-1317-78-8-1829
  15. Surgrue, R. J., J. Fu, J. Howe, and Y. C. Chan (1997) Expression of the dengue virus structural proteins in Pichia pastoris leads to the generation of virus-like particles. J. Gen. Virol. 78: 1861-1866 https://doi.org/10.1099/0022-1317-78-8-1861
  16. Brake, A. J., J. P. Merryweather, D. G. Coit, U. A. Heberlein, T. P. Masiary, G. T. Mullenback, M. S. Urdea, P. Valenzuela, and P. J. Barr (1984) Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81: 4642-4646 https://doi.org/10.1073/pnas.81.15.4642
  17. Ramisetti, S., H. A. Kang, S. K. Rhee, and C. H. Kim (2003) Production of recombinant hirudin in galactokinase- deficient Saccharomyces cerevisiae by fed-batch fermentation with continuous glucose feeding. Biotechnol. Bioprecess Eng. 8: 183-186 https://doi.org/10.1007/BF02935894
  18. Park, S. M. and D. H. Kim (2004) Transformation of a filamentous fungus Cryphonectria parasitica using Agrobacterium tumefaciens. Biotechnol. Bioprecess Eng. 9: 217-222 https://doi.org/10.1007/BF02942296
  19. Schreuder, M. P., C. Deen, W. J. A. Boersma, P. H. Pouwels, and F. M. Klis (1996) Yeast expressing hepatitis B virus antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14: 383-388 https://doi.org/10.1016/0264-410X(95)00206-G
  20. Stubbs, A. C., K. S. Martin, C. Coeshott, S. V. Skaates, D. R. Kuritzkes, D. Bellgrau, A. Franzusoff, R. C. Duke, and C. C. Wilson (2001) Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat. Med. 7: 625-629 https://doi.org/10.1038/87974
  21. Shin, S. J., Y. W. Cho, and H. S. Yoo (2003) Cloning, sequencing and expression of apxIA, IIA, IIIA of Actinobacillus pleuropneumoniae isolated in Korea. Kor. J. Vet. Res. 43: 247-253
  22. Park, S. M., A. Y. Mo, Y. S. Jang, J. H. Lee, M. S. Yang, and D. H Kim (2004) Expression of a functional human Tumor Necrosis Factor (hTNF)-$\alpha$ in Yeast Saccharomyces cerevisiae. Biotechnol. Bioprecess Eng. 9: 292-296 https://doi.org/10.1007/BF02942346
  23. Ito, H., Y. Fukuda, K. Murata, and A. Kimura (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168
  24. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  25. Towbin, H., T. Staehelin, and J. Gorden (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedures and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354
  26. Schreuder, M. P., C. Deen, W. J. A. Boersma, P. H. Pouwels, and F. M. Klis (1996) Yeast expressing hepatitis B virus antigen determinants on its surface: Implications for a possible oral vaccine. Vaccine 14: 383-388 https://doi.org/10.1016/0264-410X(95)00206-G
  27. Bathurst, I. C. (1994) Protein expression in yeast as an approach to production of recombinant malaria antigens. Am. J. Trop. Med. Hyg. 50: 11-19 https://doi.org/10.4269/ajtmh.1994.50.11
  28. Schreuder, M. P., A. T. A. Mooren, H. Y. Toschka, T. C. Verrips, and F. M. Klis (1996) Immobilizing proteins on the surface of yeast cells. Trends. Biotechnol. 14: 115-120 https://doi.org/10.1016/0167-7799(96)10017-2