• Title/Summary/Keyword: albedo

Search Result 278, Processing Time 0.021 seconds

해석적 방법을 이용한 Worst Hot 조건에서 질량변화의 여부에 따른 발사시 열해석

  • Kim, Hui-Kyung;Choi, Joon-Min;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-49
    • /
    • 2004
  • Analytical solutions are developed to predict temperature of a satellite box during launch stage under the assumption of worst hot condition. The considered time period is from fairing jettison to separation of satellite during launch stage. After fairing jettison, a box mounted on outer surface of satellite are exposed to space environments such as direct solar flux, Earth IR, Albedo, and free molecular heating. The thermal governing equation is simplified to 1st order ordinary differential equation such that analytic solutions are acquired after the box is assumed as a single lumped mass. The analytical solutions are also available for mass varying box. Finally, the practical application is performed for the case of STSAT-1 launch scenario.

  • PDF

A Far-UV Study in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Min, Kyung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.80.2-80.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([152,180], [-28, 0]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It says strong absorption in the dense Taurus cloud and Auriga cloud. Although the column density of Perseus and California cloud is similar to Taurus' and Auriga's, Perseus and California cloud do not show strong absorption in FUV because they are more distant than Taurus and Auriga cloud. We also present the dust scattering simulation based on Monte Carlo Radiative Transfer technique. Through the result of Monte-Carlo dust scattering simulation and comparing the result with FIMS-GALEX unified map we gain deeper understanding related to the spatial dust distribution of TPA region. As a preliminary result of the simulation we present the most probable front face, thickness, albedo, and asymmetry factor in this region, respectively. Through this work we can show a certain inclination of the spatial dust distribution. During this study we have developed the FUV dust scattering simulation code using Monte-Carlo method. We expect that it will be generally used to simulate dust scattering in the Galaxy.

  • PDF

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Comparison of Aerosol Optical Properties from Different Models of Skyradiometer (스카이라디오미터 모델에 따른 에어러솔의 광학적 특성 비교)

  • Choi, Yongjoo;Ghim, Young Sung;Sohn, Byung-Ju
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.311-317
    • /
    • 2011
  • Aerosol optical properties from the radiation measurements by SKYNET PREDE skyradiometers, POM-01 and POM-02 were compared during the inter-calibration campaign at Seoul in February 2009. The monochromatic solar flux at the top of the atmosphere ($F_0$) gave a relative standard deviation (RSD) of 9-10% for both instruments. This comparatively high value of RSD was probably because $F_0$ was determined at short time intervals, in the morning and afternoon, using the measurements made in the polluted environment of Seoul. Although POM-02 was more effective in tracking the solar radiation, aerosol optical depths (AODs) from the two instruments were very similar after the cloud screening procedure. The squared correlation coefficients ($R^2$) of single scattering albedo (SSA) and real and imaginary refractive indices between the two instruments was around 0.5 but increased to 0.7-0.8 when only using AOD greater than 0.4. Nevertheless, mean values of the Angstrom exponent, SSA, and the imaginary refractive index of POM-02 were higher than those of POM-01.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Radiation Streaming in KNU-1 Reactor Cavity (고리 1호기 원자로 공동에서의 방사선 흐름 현상 해석)

  • Kun-Woo Cho;Chang-Soon Kang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 1986
  • The neutron fluxes and dose rates due to radiation streaming from reactor cavities were evaluated at the KNU-1 reactor pressure vessel (RPY) head flange elevation. To find a suitable cross section data set for the evaluation, a benchmark test was performed for three data sets; DLC-23/CASK, DLC-31/FEWG, and DLC-47/BUGLE. The leakage fluxes from the KNU-1 RPV outer surface were calculated with two different methods: 1-D calculation with ANISN, and 2-D calculation with DOT3.5. The Monte Carlo procedures as embodied in the MORSE-CG code combined with the albedo option were applied to predict the radiation distributions in the cavity region. Finally, the activation analysis of the stud bolts was performed to identify the major activation products.

  • PDF

The Development of the Solar-Meteorological Resources Map based on Satellite data on Korean Peninsula (위성자료기반의 한반도 태양기상자원지도 개발)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.342-347
    • /
    • 2011
  • Solar energy is attenuated by absorbing gases (ozone, aerosol, water vapour and mixed gas) and cloud in the atmosphere. And these are measured with solar instruments (pyranometer, phyheliometer). However, solar energy is insufficient to represent detailed energy distribution, because the distributions of instruments are limited on spatial. If input data of solar radiation model is accurate, the solar energy reaches at the surface can be calculated accurately. Recently a variety of satellite measurements are available to TERA/AQUA (MODIS), AURA (OMI) and geostationary satellites (GMS-5, GOES-9, MTSAT-1R, MTSAT-2 and COMS). Input data of solar radiation model can be used aerosols and surface albedo of MODIS, total ozone amount of OMI and cloud fraction of meteorological geostationary satellite. The solar energy reaches to the surface is calculated hourly by solar radiation model and those are accumulated monthly and annual. And these results are verified the spatial distribution and validated with ground observations.

  • PDF

KEEP-North : Kirkwood Excitation and Exile Patrol of the Northern Sky (보현산 천문대 소행성 관측 연구)

  • Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.61.3-62
    • /
    • 2016
  • An asteroid family is a group of asteroidal objects in the proper orbital element space (a, e, and i), considered to have been produced by a disruption of a large parent body through a catastrophic collision. Family members usually have similar surface properties such as spectral taxonomy types, colors, and visible geometric albedo with a same dynamical age. Therefore an asteroid family could be called as a natural Solar System laboratory and is also regarded as a powerful tool to investigate space weathering and non-gravitational phenomena such as the Yarkovsky/YORP effects. We carry out time series photometric observations for a number of asteroid families to obtain their physical properties, including sizes, shapes, rotational periods, spin axes, colors, and H-G parameters based on nearly round-the-clock observations, using several 0.5-2 meter class telescopes in the Northern hemisphere, including BOAO 1.8 m, LOAO 1.0 m, SOAO 0.6 m facilities in KASI, McDonald Observatory 2.1 m instrument, NARIT 2.4 m and TUG 1.0 m telescopes. This study is expected to find, for the first time, some important clues on the collisional history in our Solar System and the mechanisms where the family members are being transported from the resonance regions in the Main-belt to the near Earth space.

  • PDF

Theory of Radiative Transfer for 3.3-micron $CH_4$ emissions from the Auroral Regions of Jupiter

  • Kim, Sang Joon;Sohn, Mirim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2014
  • Radiative transfer programs to simulate the 3-micron auroral $CH_4$ emissions of Jupiter have been developed. The formalism of the radiative transfer calculations including the thermal, fluorescent, and auroral emissions of the $CH_4$ bands for an atmospheric layer having an optical depth of ${\tau}_v$ is given by: ${\mu}dI_v/d{\tau}_v=I_v-{\varpi}_v{^*}J_v(1-{\varpi}_v{^*})B_v-{\varpi}{^*}F_{ov}{e}{x}{p}(-{\tau}_v/{\mu}_o)4{\pi}-hv{\varpi}{^*}V/4{\pi}$ where ${\varpi}_v{^*}$ is the single scattering albedo of $CH_4$ consisting of Einstein A coefficient and collisional deexcitation rate. Other terms are usual radiative transfer parameters appearing in textbooks including the terms for scattered ${\varpi}_v{^*}J_v$, thermal $(1-{\varpi}_v{^*})B_v$, and attenuated solar radiations $F_{ov}$ at the certain atmospheric layer. For auroral excitations, we include V, which is the number of excited states per $cm^3$ persec by auroral particle bombardments. We apply this formalism to the high-resolution spectra of the auroral regions observed with GNIRS/Gemini North, and will present preliminary results for the 3 micron auroral processes of Jupiter.

  • PDF

Radiative Heat Transfer in Radiatively Particpating Finite Cylindrical Media - Exact and P-N Solutions - (복사에 관여하는 유한 원통형 매질에서의 복사열 전달)

  • 서인수;손종관;임승욱;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1428-1437
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.