In case of a dangerous situation, the roof, which serves as an emergency exit, must be open in case of fire according to the Fire Act. However, when the roof door is opened, it has become a place of various incidents and accidents such as illegal entry, crime, and suicide. As a result, it is a reality to close the roof door in terms of facility management to prevent crime, various incidents, and accidents. Accordingly, the government is pushing to legislate regulations on housing construction standards, etc. that mandate the installation of electronic automatic opening and closing devices on rooftop doors. Therefore, in this paper, an intelligent emergency door opening/closing device system is proposed. To this end, an intelligent emergency door opening and closing system was developed by linking wired and wireless access counting and AI image analysis. Finally, it is possible to build a wireless communication-based integrated management platform that provides remote control and history management in a centralized method of device status real-time monitoring and event alarm.
Kim, Hongrak;Kim, Younjin;Lee, Wonyoung;Woo, Seonkeol;Kim, Gwanghee
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.4
/
pp.119-125
/
2022
The power supply for the anti-aircraft radar homing sensor should allow the system to receive power quickly and stably without the influence of noise. For this purpose, DC-DC converters are widely used for reliable power conversion. Also, switching of DC-DC converters Frequency noise should not cause false alarms and ghosts that may affect the detection and tracking performance of the system, and it should have a check function that can monitor power in real time while the homing sensor is operating. In order to apply to anti-aircraft radar homing sensor, we developed a multi-output switching power supply with maximum output 𐩒𐩒𐩒 W, efficiency 80% or more (@100% load), output power by receiving 28VDC input, and power supply to achieve more than 80% efficiency. A DC-DC converter was applied to this large output, and the multi-output flyback method was applied to the rest of the low-power output.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.692-712
/
2022
Buoys used for Aid to Navigation systems are widely used to guide the sea paths and are powered by batteries, requiring continuous battery replacement. However, since human labor is required to replace the batteries, humans can be exposed to dangerous situation, including even collision with shipping vessels. In addition, Maritime sensors are installed on the route signs, so that these are often damaged by collisions with small and medium-sized ships, resulting in significant financial loss. In order to prevent these accidents, maritime object detection technology is essential to alert ships approaching buoys. Existing studies apply a number of filters to eliminate noise and to detect objects within the sea image. For this process, most studies directly access the pixels and process the images. However, this approach typically takes a long time to process because of its complexity and the requirements of significant amounts of computational power. In an emergent situation, it is important to alarm the vessel's rapid approach to buoys in real time to avoid collisions between vessels and route signs, therefore minimizing computation and speeding up processes are critical operations. Therefore, we propose Fast Connected Component Labeling (FCCL) which can reduce computation to minimize the processing time of filter applications, while maintaining the detection performance of existing methods. The results show that the detection performance of the FCCL is close to 30 FPS - approximately 2-5 times faster, when compared to the existing methods - while the average throughput is the same as existing methods.
Anh, Nguyen Duc;Van Thanh, Pham;Lap, Doan Tu;Khai, Nguyen Tuan;Van An, Tran;Tan, Tran Duc;An, Nguyen Huu;Dinh, Dang Nhu
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.381-404
/
2022
Forest fires inflict great losses of human lives and serious damages to ecological systems. Hence, numerous fire detection methods have been proposed, one of which is fire detection based on sensors. However, these methods reveal several limitations when applied in large spaces like forests such as high cost, high level of false alarm, limited battery capacity, and other problems. In this research, we propose a novel forest fire detection method based on image processing and correlation coefficient. Firstly, two fire detection conditions are applied in RGB color space to distinguish between fire pixels and the background. Secondly, the image is converted from RGB to YCbCr color space with two fire detection conditions being applied in this color space. Finally, the correlation coefficient is used to distinguish between fires and objects with fire-like colors. Our proposed algorithm is tested and evaluated on eleven fire and non-fire videos collected from the internet and achieves up to 95.87% and 97.89% of F-score and accuracy respectively in performance evaluation.
The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.
Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
Atmosphere
/
v.31
no.5
/
pp.525-537
/
2021
Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.
Stytsyuk, Rita Yurievna;Panova, Alexandra Georgievna;Zenin, Sergey;Kvon, Daniil Andreevich;Gorokhova, Anna Evgenievna;Ulyanishchev, Pavel Viktorovich
International Journal of Computer Science & Network Security
/
v.22
no.6
/
pp.39-44
/
2022
The advent, course, and possible consequences of the COVID-19 pandemic are now the focus of global attention. From whichever side the geopolitical centers of influence might view it, the problem of the coronavirus concerns all world leaders and the representatives of all branches of science, especially physicians, economists, and politicians - virtually the entire population of the planet. The uniqueness of the COVID-19 phenomenon lies in the uncertainty of the problem itself, the peculiarities and specifics of the course of the biological processes in modern conditions, as well as the sharp confrontation of the main political players on the world stage. Based on an analysis of scientific research, the article describes the profile of the emotional concept of "anxiety" in Russian linguoculture. Through monitoring the headlines of Russian media reports in the "COVID-19" section of Google News and Mail News news aggregators dated August 4-6, 2021, the study establishes the quantitative and qualitative characteristics of the alarm-generating news products on coronavirus in the Russian segment of the Internet and interprets the specifics of media information about COVID-19. The level of mass media criticism in Russia is determined through a phone survey. It is concluded that coronavirus reports in online media conceptualize anxiety about the SARS virus and the COVID-19 disease as a complex cognitive structure. The media abuse the trick of "magic numbers" and emotionally expressive words in news headlines, which are perceived by mass information consumers first and typically uncritically.
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.4
/
pp.150-156
/
2022
As the 4th industrial revolution emerges, the implementation of smart factories are essential in the manufacturing industry. However, 80% of small and medium-sized enterprises that have introduced smart factories remain at the basic level. In addition, in root industries such as injection molding, PLC and HMI software are used to implement functions that simply show operation data aggregated by facilities in real time. This has limitations for managers to make decisions related to product production other than viewing data. This study presents a method for upgrading the level of smart factories to suit the reality of small and medium-sized enterprises. By monitoring the data collected from the facility, it is possible to determine whether there is an abnormal situation by proposing an appropriate algorithm for meaningful decision-making, and an alarm sounds when the process is out of control. In this study, the function of HMI has been expanded to check the failure frequency rate, facility time operation rate, average time between failures, and average time between failures based on facility operation signals. For the injection molding industry, an HMI prototype including the extended function proposed in this study was implemented. This is expected to provide a foundation for SMEs that do not have sufficient IT capabilities to advance to the middle level of smart factories without making large investments.
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.4
/
pp.157-166
/
2022
In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.
This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.