• Title/Summary/Keyword: alarm

Search Result 1,694, Processing Time 0.022 seconds

Development of AI Image Analysis Emergency Door Opening and Closing System linked Wired/Wireless Counting (유무선 카운팅 연동형 AI 영상분석 비상문 개폐 시스템 개발)

  • Cheol-soo, Kang;Ji-yun, Hong;Bong-hyun, Kim
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In case of a dangerous situation, the roof, which serves as an emergency exit, must be open in case of fire according to the Fire Act. However, when the roof door is opened, it has become a place of various incidents and accidents such as illegal entry, crime, and suicide. As a result, it is a reality to close the roof door in terms of facility management to prevent crime, various incidents, and accidents. Accordingly, the government is pushing to legislate regulations on housing construction standards, etc. that mandate the installation of electronic automatic opening and closing devices on rooftop doors. Therefore, in this paper, an intelligent emergency door opening/closing device system is proposed. To this end, an intelligent emergency door opening and closing system was developed by linking wired and wireless access counting and AI image analysis. Finally, it is possible to build a wireless communication-based integrated management platform that provides remote control and history management in a centralized method of device status real-time monitoring and event alarm.

Development of Power Supply for Small Anti-air Tracking Radar (소형 대공 추적레이다용 전원공급기 개발)

  • Kim, Hongrak;Kim, Younjin;Lee, Wonyoung;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.119-125
    • /
    • 2022
  • The power supply for the anti-aircraft radar homing sensor should allow the system to receive power quickly and stably without the influence of noise. For this purpose, DC-DC converters are widely used for reliable power conversion. Also, switching of DC-DC converters Frequency noise should not cause false alarms and ghosts that may affect the detection and tracking performance of the system, and it should have a check function that can monitor power in real time while the homing sensor is operating. In order to apply to anti-aircraft radar homing sensor, we developed a multi-output switching power supply with maximum output 𐩒𐩒𐩒 W, efficiency 80% or more (@100% load), output power by receiving 28VDC input, and power supply to achieve more than 80% efficiency. A DC-DC converter was applied to this large output, and the multi-output flyback method was applied to the rest of the low-power output.

High-Speed Maritime Object Detection Scheme for the Protection of the Aid to Navigation

  • Lee, Hyochan;Song, Hyunhak;Cho, Sungyoon;Kwon, Kiwon;Park, Sunghyun;Im, Taeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.692-712
    • /
    • 2022
  • Buoys used for Aid to Navigation systems are widely used to guide the sea paths and are powered by batteries, requiring continuous battery replacement. However, since human labor is required to replace the batteries, humans can be exposed to dangerous situation, including even collision with shipping vessels. In addition, Maritime sensors are installed on the route signs, so that these are often damaged by collisions with small and medium-sized ships, resulting in significant financial loss. In order to prevent these accidents, maritime object detection technology is essential to alert ships approaching buoys. Existing studies apply a number of filters to eliminate noise and to detect objects within the sea image. For this process, most studies directly access the pixels and process the images. However, this approach typically takes a long time to process because of its complexity and the requirements of significant amounts of computational power. In an emergent situation, it is important to alarm the vessel's rapid approach to buoys in real time to avoid collisions between vessels and route signs, therefore minimizing computation and speeding up processes are critical operations. Therefore, we propose Fast Connected Component Labeling (FCCL) which can reduce computation to minimize the processing time of filter applications, while maintaining the detection performance of existing methods. The results show that the detection performance of the FCCL is close to 30 FPS - approximately 2-5 times faster, when compared to the existing methods - while the average throughput is the same as existing methods.

Efficient Forest Fire Detection using Rule-Based Multi-color Space and Correlation Coefficient for Application in Unmanned Aerial Vehicles

  • Anh, Nguyen Duc;Van Thanh, Pham;Lap, Doan Tu;Khai, Nguyen Tuan;Van An, Tran;Tan, Tran Duc;An, Nguyen Huu;Dinh, Dang Nhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.381-404
    • /
    • 2022
  • Forest fires inflict great losses of human lives and serious damages to ecological systems. Hence, numerous fire detection methods have been proposed, one of which is fire detection based on sensors. However, these methods reveal several limitations when applied in large spaces like forests such as high cost, high level of false alarm, limited battery capacity, and other problems. In this research, we propose a novel forest fire detection method based on image processing and correlation coefficient. Firstly, two fire detection conditions are applied in RGB color space to distinguish between fire pixels and the background. Secondly, the image is converted from RGB to YCbCr color space with two fire detection conditions being applied in this color space. Finally, the correlation coefficient is used to distinguish between fires and objects with fire-like colors. Our proposed algorithm is tested and evaluated on eleven fire and non-fire videos collected from the internet and achieves up to 95.87% and 97.89% of F-score and accuracy respectively in performance evaluation.

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

Impact of Internet Media Reports on the COVID-19 Pandemic in the Population Aged 20-35

  • Stytsyuk, Rita Yurievna;Panova, Alexandra Georgievna;Zenin, Sergey;Kvon, Daniil Andreevich;Gorokhova, Anna Evgenievna;Ulyanishchev, Pavel Viktorovich
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2022
  • The advent, course, and possible consequences of the COVID-19 pandemic are now the focus of global attention. From whichever side the geopolitical centers of influence might view it, the problem of the coronavirus concerns all world leaders and the representatives of all branches of science, especially physicians, economists, and politicians - virtually the entire population of the planet. The uniqueness of the COVID-19 phenomenon lies in the uncertainty of the problem itself, the peculiarities and specifics of the course of the biological processes in modern conditions, as well as the sharp confrontation of the main political players on the world stage. Based on an analysis of scientific research, the article describes the profile of the emotional concept of "anxiety" in Russian linguoculture. Through monitoring the headlines of Russian media reports in the "COVID-19" section of Google News and Mail News news aggregators dated August 4-6, 2021, the study establishes the quantitative and qualitative characteristics of the alarm-generating news products on coronavirus in the Russian segment of the Internet and interprets the specifics of media information about COVID-19. The level of mass media criticism in Russia is determined through a phone survey. It is concluded that coronavirus reports in online media conceptualize anxiety about the SARS virus and the COVID-19 disease as a complex cognitive structure. The media abuse the trick of "magic numbers" and emotionally expressive words in news headlines, which are perceived by mass information consumers first and typically uncritically.

Function Expansion of Human-Machine Interface(HMI) for Small and Medium-sized Enterprises: Focused on Injection Molding Industries (중소기업을 위한 인간-기계 인터페이스(HMI) 기능 확장: 사출성형기업 중심으로)

  • Sungmoon Bae;Sua Shin;Junhong Yook;Injun Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.150-156
    • /
    • 2022
  • As the 4th industrial revolution emerges, the implementation of smart factories are essential in the manufacturing industry. However, 80% of small and medium-sized enterprises that have introduced smart factories remain at the basic level. In addition, in root industries such as injection molding, PLC and HMI software are used to implement functions that simply show operation data aggregated by facilities in real time. This has limitations for managers to make decisions related to product production other than viewing data. This study presents a method for upgrading the level of smart factories to suit the reality of small and medium-sized enterprises. By monitoring the data collected from the facility, it is possible to determine whether there is an abnormal situation by proposing an appropriate algorithm for meaningful decision-making, and an alarm sounds when the process is out of control. In this study, the function of HMI has been expanded to check the failure frequency rate, facility time operation rate, average time between failures, and average time between failures based on facility operation signals. For the injection molding industry, an HMI prototype including the extended function proposed in this study was implemented. This is expected to provide a foundation for SMEs that do not have sufficient IT capabilities to advance to the middle level of smart factories without making large investments.

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.