• Title/Summary/Keyword: aircraft turbulence

Search Result 68, Processing Time 0.026 seconds

A Study on the Numerical Analysis Methodology for Thermal and Flow Characteristics of High Pressure Turbine in Aircraft Gas Turbine Engine (항공기용 가스터빈 엔진의 고압터빈에서 열유동 특성해석을 위한 전산해석기법 연구)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Youngseok;Cho, Leesang;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2014
  • In this study, a numerical analysis methodology is studied to predict thermal and flow characteristics of C3X vane with internal cooling. Effects of turbulence models, transition models and viscous work term on temperature and pressure distributions on the vane surface are investigated. These optional terms have few effects on the pressure distributions over the vane surface. However, they have great influence on prediction of the temperature distributions on the vane surface. The combination of k-${\omega}$ based SST turbulence model, ${\gamma}$ transition model and viscous work term are better than RSM turbulence model on prediction of the surface temperature. The average temperature difference between CFD results and experimental results is calculated 2 % at the pressure side and 1 % at the suction side. Furthermore computing time of this combination is half of the RSM turbulence model. When k-${\omega}$ based SST turbulence model and ${\gamma}$ transition model with viscous work term are applied, more accurate predictions of thermal and internal flow characteristics of high pressure turbine are expected.

A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW (2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구)

  • Lee, Jae-Hun;Jung, Kyoung-Jin;Lee, Kil-Tae;Kang, In-Mo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF

A study on the reduction in angle of attack by the constructions in the vicinity of airport runway with crosswind (활주로 주변 건물을 지나는 측풍에 의한 이.착륙 항공기의 받음각 감소에 관한 연구)

  • Hong, Gyo-Young;Sheen, Dong-Jin;Park, Soo-Bok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper illustrates how simulation modeling can be of substantial help in designing constructions in the vicinity of airport runway and presents results about the influence of aircraft wake vortices through computer simulation. The cross-wind energy dissipation rate is estimated from the Y-directional velocity spectrum for a sample in a real meteorological observation data. The eddy region about cross wind in the vicinity of airport runway is highly dependent on the height and shape of the buildings and the AOA of aircraft is greatly influenced by Y-directional velocity occurred by dint of separation region in runway.

  • PDF

Simulation of Conceptual Designs of a Three-Surface Stealth Strike Fighter

  • Kuizhi, Yue;ShiChun, Chen;Wenlin, Liu;Dazhao, Yu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.366-373
    • /
    • 2014
  • A conceptual design of a three-surface strike fighter was studied and stealth performance was taken into account to enhance survivability and battle effectiveness. CATIA was used to design the aircraft's three-dimensional prototype model and the weapon carriage arrangement was also studied. The aircraft's RCS characteristics and distributions under X, S, C, and L bands were simulated using the RCSPlus software, which is based on the PO method. Pressure and velocity distributions of the flow field were also simulated using CFD. A turbulence model was based on standard $k-{\varepsilon}$ function and N-S functions were used during the CFD computation. Lift coefficients, drag coefficients, and lift-to-drag ratio were obtained by aerodynamic simulation. The results showed that: (1) the average value of head-on RCS between ${\pm}30^{\circ}$ is below -3.197 dBsm, and (2) the lift coefficient is 0.34674, the drag coefficient is 0.04275, and the lift-to-drag ratio is 8.11087 when the attack angle is $2.5^{\circ}$.

A study on Flow Characteristics of the Semi-Circular inlet S-Shaped Intake at Various Angle of Incidence (입사각에 따른 반원형 입구형상 S-Shaped Intake에 대한 유동특성 연구)

  • Lee, Jihyeong;Cho, Jinsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • Air intakes are an essential component of aircraft engines. They are mainly used to offer uniform airflows to engine faces. Fighter aircraft have to mask the engine face inside the fuselage in order to reduce the Radar Cross Section(RCS). Therefore, offset intakes like a S-Duct are one of promising components for this purpose. During a fight, it is unavoidable that the flow will enter the intakes at some face angles other than zero. In this case, the performance of the aircraft engine will be influenced to the angle of incidence. In this study, the CFD analysis of the semi-circular S-Duct with AR(0.5,0) is performed to investigate the influence of the angle of incidence on the performance of the S-Duct using a distortion coefficient. To consider the adverse pressure gradient, a $k-{\omega}$ SST turbulence model is employed. The secondary flow and flow separation are observed for all computational cases. It is found that the positive incidence angle produces the best performances.

Design and Analysis of Wing-Tip and Wing-Body Fairings (날개 끝과 날개 동체 페어링의 설계 및 공력해석)

  • Park, Sang-Il;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2011
  • In this study, fairing configurations for an aircraft are designed and the aerodynamic analyses of the fairings are performed to find the best choice for the aircraft. Fairings considered are wing-tip fairing and wing-body fairing. Wing alone analyses are done for the wing-tip faring selection, while wing-body-tail analyses are done for the wing-body fairing selection. A 3-D RANS solver with Menter's ${\kappa}-{\omega}$ SST turbulence model are used for the aerodynamic analyses. The effects on the drag of the aircraft are examined by comparing the analysis results with and without the farings.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

Numerical investigation of on-demand fluidic winglet aerodynamic performance and turbulent characterization of a low aspect ratio wing

  • A. Mondal;S. Chatterjee;A. McDonald Tariang;L. Prince Raj;K. Debnath
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.107-125
    • /
    • 2023
  • Drag reduction is significant research in aircraft design due to its effect on the cost of operation and carbon footprint reduction. Aircraft currently use conventional solid winglets to reduce the induced drag, adding extra structural weight. Fluidic on-demand winglets can effectively reduce drag for low-speed flight regimes without adding any extra weight. These utilize the spanwise airflow from the wingtips using hydraulic actuators to create jets that negate tip vortices. This study develops a computational model to investigate fluidic on-demand winglets. The well-validated computational model is applied to investigate the effect of injection velocity and angle on the aerodynamic coefficients of a rectangular wing. Further, the turbulence parameters such as turbulent kinetic energy (TKE) and turbulent dissipation rate are studied in detail at various velocity injections and at an angle of 30°. The results show that the increase in injection velocity shifted the vortex core away from the wing tip and the increase in injection angle shifted the vortex core in the vertical direction. Further, it was found that a 30° injection is efficient among all injection velocities and highly efficient at a velocity ratio of 3. This technology can be adopted in any aircraft, effectively working at various angles of attack. The culmination of this study is that the implementation of fluidic winglets leads to a significant reduction in drag at low speeds for low aspect ratio wings.

A Study on the Air Travel Safety of Infants and Children (영유아 항공 여행 안전성에 관한 고찰)

  • Kim, Sun Ah;Choi, Youn Seo;Kim, Sun Ihee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.93-104
    • /
    • 2018
  • It is mandatory to use car seats for infants and children in the private vehicles in accordance with the traffic law of Korea. Recently, legislation has also been proposed to expand the use car seats to express and intercity buses. This reflects a growing consensus that mandatory infant and child car seats, both for private and commercial vehicles, are essential. However, Korean laws concerning infants and children on board aircraft allow parents or guardians to hold children under two years of age on their laps without any restraint devices. It is not possible for a parent to physically restrain an infant or child, especially during a sudden acceleration or deceleration, unanticipated or severe turbulence, or impact. The use of CRS provides an equivalent level of safety to infants and children as that afforded to adult passengers wearing seat belts. But there is no regulation even about Child Restraint Systems on board aircraft in Korea. To enhance their safety, infants and children should be restrained in an approved child restraint system that is appropriate to their weight and height. It is necessary to examine whether infants and children in flight can achieve the same level of safety as an adult.

SELECTION OF THE OPTIMAL POSITION OF THE FLAP FOR THE IMPROVEMENT OF AERODYNAMIC PERFORMANCE (공기역학적 성능 향상을 위한 플랩의 최적 위치 선정)

  • Kang, H.M.;Park, Y.M.;Kim, C.W.;Lee, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The selection of the optimal position of the flap was performed in order to improve the aerodynamic performance during the take-off and landing processes of aircraft. For this, the existing airfoils of the main wing and flap are selected as the baseline model and the lift coefficients (cl) according to angle of attacks (AOA) were calculated with the change of the position of flap airfoil. The objective function was defined as the consideration of the maximum cl, lift to drag ratio and cl at certain AOA. Then, at 121 experimental points within $20mm{\times}20mm$ domain, two dimensional flow simulations with Spalart-Allmaras turbulence model were performed concerning the AOA from 0 to 15 degree. If the optimal position was located at the domain boundary, the domain moved to the optimal position. These processes were iterated until the position was included in the inside of the domain. From these processes, the flow separation at low AOA was removed and cl increased linearly comparing with that of the baseline model.