• Title/Summary/Keyword: airborne-particle abrasion

Search Result 27, Processing Time 0.027 seconds

The effect of repeated surface treatment of zirconia on its bond strength to resin cement

  • Maciel, Lucas Campagnaro;Amaral, Marina;Queiroz, Daher Antonio;Baroudi, Kusai;Silva-Concilio, Lais Regiane
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.291-298
    • /
    • 2020
  • PURPOSE. The aim of this study is to evaluate the influence of repeated surface treatments on wettability and surface roughness for zirconia surface and bond strength of zirconia-based ceramics to resin cement. MATERIALS AND METHODS. Seventy blocks (10 × 10 × 3 mm) of zirconia-based ceramics were fabricated and divided into two groups according to the surface treatments: (A) 110 ㎛ Al2O3 airborne-particle abrasion and (R) 110 ㎛ silica modified Al2O3 airborne-particle abrasion. At stage 2, each group was subdivided into 5 groups according to the surface retreatments: (a) 110 ㎛ Al2O3 airborne-particle abrasion, (r) 110 ㎛ silica modified Al2O3 airborne-particle abrasion, (D) diamond bur, (Da) diamond bur + 110 ㎛ Al2O3 airborne-particle abrasion, and (Dr) diamond bur + 110 ㎛ silica modified Al2O3 airborne-particle abrasion. Cylinders of self-adhesive resin cement were cemented onto each treated ceramic surface and subjected to micro-shear bond strength test. Additional specimens were prepared for roughness and wettability analyses. The data were subjected to t-test and One-way ANOVA followed by Tukey's post hoc test (α=.05). RESULTS. At stage 1, group R presented higher bond strength values than group A (P=.000). There was a statistically significant increase of bond strength at stage 2 for group A (P=.003). The diamond bur influenced the surface roughness, increasing the values (P=.023). Group R provided better wettability. Regardless of the applied surface treatment, most of failures were adhesive. CONCLUSION. The combination of application and reapplication of Rocatec Plus showed the best results of bond strength. Surface retreatment and recementation might be an indicated clinical strategy.

Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post (미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향)

  • Sim, Eun-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Purpose: Many studies have shown that airborne-particle abrasion of fiber post can improve the bonding strength to resin cement. But, airborne-particle abrasion may influence the property of fiber post. The purpose of this study is to evaluate the influence of airborne-particle abrasion on flexural strength of fiber post. Materials and Methods: Two fiber-reinforced posts; DT Light Post Size 2 (1.8 mm diameter, Bisco Inc) and RelyX Fiber Post Size 3 (1.9 mm diameter, 3M ESPE); were used in this study. Each group was divided into 3 subgroups according to different surface treatments; without pretreatment: $50{\mu}m$ aluminum oxide (Cobra$^{(R)}$, Renfert): and $30{\mu}m$ aluminum oxide modified with silica (Rocatec Soft$^{(R)}$, 3M ESPE). After airborne-particle abrasion procedure, three-point bending test was done to determine the flexural strength and flexural modulus. The diameter of each posts was measured to an accuracy of 0.01 mm using a digital micrometer. There was no diameter change before and after airborneparticle abrasion. The mean flexural moduli and flexural strengths calculated using the appropriate equations. The results were statistically analyzed using One-way ANOVA and Scheffe's post-hoc test at 95% confidencial level. Results: There was no significant difference on flexural strength between groups. Conclusion: In the limitation of this study, flexural strength and flexural modulus of fiber post are not affected by airborne-particle abrasion.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

Retentive bond strength of fiber-reinforced composite posts cemented with different surface treatments (Fiber reinforced composite post의 표면 처리에 따른 접착 강도)

  • Roh, Hyunsik;Noh, Kwantae;Woo, Yi-Hyung;Pae, Ahran
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.113-120
    • /
    • 2014
  • This study will evaluate the effectiveness of various pretreatments when fiber-reinforced composite (FRC) post is bonded to endodontically treated tooth with resin cement. Materials and methods: Canal shaping of FRC post (DT Light post, Size 3, Bisco Inc., Schaumburg, IL, USA) was performed on endodontically treated premolars at 1.5 cm from CEJ. Samples were divided into 6 groups of surface treatment after conventional washing and drying to the canal. Total of 24 FRC posts were randomly divided into 6 groups of surface treatment as follows: Group C: control - no surface treatment, Group A: airborne-particle abrasion (Cojet sand, 3M ESPE), Group S: silanization (Bis-silane, Bisco Inc.), Group M: universal primer (Monobond-plus primer, Ivoclar Vivadent Inc.), Group AS: silanization after airborne-particle abrasion, Group AM: universal primer treatment after airborne-particle abrasion. Pretreated fiber posts were cemented with resin-based luting material and photo-polymerized and cut to the thickness of 1 mm. Push-out test using a universal testing machine was performed. Bonding failure strength of post dislodgement was measured and the type of bonding failure was classified. Data were analyzed with Kruskal-Wallis test and multiple comparison groups were performed using Tukey HSD value of rank test (${\alpha}=0.05$). Results: Group AS showed significantly highest bonding strength. Group S, group AM, group A, and group M showed lower bonding strength in order. The control group showed the lowest bonding strength. Conclusion: Surface treatment with silane showed to be the most effective of the surface pretreatment methods for cementation of FRC post. Surface treatment with universal primer showed no significant difference compared with no surface treatment group as for bonding strength.

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

Comparison of Shear Bonding Strength of Laminate Veneer by Lithium Disilicate Ceramics and Surface Treatment Methods (리튬디실리케이트 세라믹과 표면처리방법에 따른 라미네이트 베니어의 전단결합강도 비교)

  • Park, Sang-Joon;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.177-185
    • /
    • 2019
  • Purpose: This study was to investigate the effect of three different surface treatments on the shear bond strength of lithium disilicate ceramics to enamel. Methods: Totally 60 lithium disilicate ceramic disc specimens were fabricated with IPS e.max press (Ivoclar Vivadent, Schaan, Liechtenstein) and Mazic Claro (Vericom, Korea). 30 specimens in each lithium disilicate ceramic were assigned to 3 groups of the each following surface treatment: 1) $50{\mu}m$ airborne particle abrasion+silane, 2) 9.5% hydroflouric acid etching (HF)+silane, 3) $50{\mu}m$ airborne particle abrasion+9.5% HF+silane. Lithium disilicate ceramic surfaces after surface treatments were AFM examined. The shear bond strength was measured in a universal testing machine at 0.5mm/min crosshead speed. All data were analyzed using a two-way ANOVA and Tukey's test(${\alpha}=0.05$). Results: The mean surface roughness of lithium disilicate ceramics ranged from $0.178{\mu}m$ to $0.441{\mu}m$. The mean shear bond strengths ranged from $23.81{\pm}2.78MPa$ to $33.99{\pm}4.85MPa$. Conclusion: 1. Mazic Claro showed higher shear bond strength than IPS e.max press at 3 different surface treatments, and no statistically significant was observed. 2. The shear bond strength of IPS e.max press was strongly enhanced as surface treated with $50{\mu}m$ airborne particle abrasion and 9.5% hydroflouric acid etching. And there was no statistical significance at the shear bond strength of Mazic Claro with surface treatments.

Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement (지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Bae, Gang-Ho;Bae, Ji-Hyeon;Huh, Jung-Bo;Choi, Jae-Won
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

  • Kulunk, Safak;Kulunk, Tolga;Sarac, Duygu;Cengiz, Seda;Baba, Seniha
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS. Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with $Al_2O_3$; Co: airborne particle abrasion with silica-coated $Al_2O_3$; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (${\alpha}=.05$). RESULTS. Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION. Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.

Influence of nano-structured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement (나노구조 알루미나 코팅 처리가 지르코니아 도재와 레진 시멘트 사이 전단 결합강도에 미치는 영향)

  • Kim, Dong-Woon;Lee, Jung-Jin;Kim, Kyoung-A;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.354-363
    • /
    • 2016
  • Purpose: The aim of this study was to investigate whether the application of nano-structured alumina coating to the surface of Y-TZP could enhance the bond strength with resin cement. Materials and methods: A total of 80 zirconia plates were prepared and divided into four groups. : 1) airborne particle abrasion treatment (A) : 2) Rocatec treatment after airborne particle abrasion (R) : 3) nano-structured alumina coating treatment after polishing (PC) and 4) nano-structured alumina coating after airborne particle abrasion (AC). Alumina coating was formed by the hydrolysis of aluminium nitride (AlN) powder and heat treatment at $900^{\circ}C$. Coating patterns were observed with FE-SEM. Resin block was bonded to treated zirconia ceramics using resin cement. The shear bond strengths were measured before and after thermocycling. Results: The FE-SEM images show a dense and uniform nano-structured alumina coating structure, which enhances shear bond strength by increasing micro mechanical interlocking to resin cement. PC and AC groups showed higher shear bond strengths than A and R groups before and after thermocycling. A and R groups displayed significant drops in shear bond strength after thermocycling. However, PC and AC groups did not show any meaningful decreases in shear bond strength after thermocycling. Conclusion: Treatment of Y-TZP ceramics with nano-structured alumina coating could significantly increase their shear bond strength.

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.