• Title/Summary/Keyword: airborne laser scanning

Search Result 43, Processing Time 0.021 seconds

3D BUILDING RECONSTRUCTION FROM AIRBORNE LASER SCANNING DATA

  • Lee, Jeong-Ho;Han, Soo-Hee;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.587-590
    • /
    • 2007
  • The demand for more accurate and realistic 3D urban models has been increasing more and more. Many studies have been conducted to extract 3D features from remote sensing data such as satellite images, aerial photos, and airborne laser scanning data. In this paper a technique is presented to extract and reconstruct 3D buildings in urban areas using airborne laser scanning data. Firstly all points in a building were divided into some groups by height difference. From segmented laser scanning data of irregularly distributed points we generalized and regularized building boundaries which better approximate the real boundaries. Then the roof points which are subject to the same groups were classified using pre-defined models by least squares fitting. Finally all parameters of the roof surfaces were determined and 3D building models were constructed. Some buildings with complex shapes were selected to test our presented algorithms. The results showed that proposed approach has good potential for reconstructing complex buildings in detail using only airborne laser scanning data.

  • PDF

Building Extraction and 3D Modeling from Airborne Laser Scanning Data

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.447-453
    • /
    • 2007
  • The demand for more accurate and realistic 3D urban models has been increasing more and more. Many studies have been conducted to extract 3D features from remote sensing data such as satellite images, aerial photos, and airborne laser scanning data. In this paper a technique is presented to extract and reconstruct 3D buildings in urban areas using airborne laser scanning data. Firstly all points in a building were divided into some groups by height difference. From segmented laser scanning data of irregularly distributed points we generalized and regularized building boundaries which better approximate the real boundaries. Then the roof points which are subject to the same groups were classified using pre-defined models by least squares fitting. Finally all parameters of the roof surfaces were determined and 3D building models were constructed. Some buildings with complex shapes were selected to test our presented algorithms. The results showed that proposed approach has good potential for reconstructing complex buildings in detail using only airborne laser scanning data.

Extraction of Coast Topographic Information Using Mobile Laser Scanning and Airborne LiDAR (지상레이저스캐너와 항공라이다를 이용한 해안 지형정보 추출)

  • Lee, In-Su;Tcha, Dek-Kee;Kim, Su-Jeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.115-117
    • /
    • 2009
  • Terrestrial Laser Scanner and Airborne Laser Scanning is one of the state of art surveying equipments. So This study deals with the combined use of mobile TLS(Terrestrial Laser Scanner) with ALS(Airborne Laser Scanning) to extract shoreline's topography information. These two systems have their own pros and cons. Mobile TLS can capture the facades of a low story building along the shoreline fast and quickly. Meanwhile, Due to viewpoint restrictions of ALS data collection, the amount of detail, which is available for the building facades is very limited. Therefore, it is recommended that the co-registration and geo-referencing methods of both two should be developed and the application of both system for shoreline mapping also should be investigated.

  • PDF

Extracting Ground Information from Airborne Laser Scanning Data based on Mean Filtering Method (평균필터기반 항공레이저측량 자료의 지면정보 추출기법)

  • Choi, Yun-Woong;Lee, Geun-Sang;Chae, Hyo-Sok;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.61-70
    • /
    • 2005
  • Airborne laser scanning system needs preprocessing which removes some objects such as buildings from the raw DSM data to construct DEM in building area because the laser pulse can't penetrate into the buildings. This study applied the mean filtering method which has various size filter to the DSM data constructed by airborne laser scanning system and decided the optimal filter size as $39{\times}39$ by analyzing the standard deviation change ratio. Also, this study could get the ${\pm}0.065m$ standard error by comparing the optimal filtering DEM and DSM raw data of airborne laser scanning. Therefore, it could know that the mean filtering method, which is presented in this study, is very effective to extract DEM in the urban area which has a low relief.

  • PDF

The Evaluation of Accuracy for Airborne Laser Surveying via LiDAR System Calibration (시스템 초기화(Calibration)에 따른 항공레이저측량의 정확도 평가)

  • 이대희;위광재;김승용;김갑진;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.15-26
    • /
    • 2004
  • The calibration for systematic error in LiDAR is crucial for the accuracy of airborne laser scanning. The main error is the misalignment of platforms between INS(Inertial Navigation System) and Laser scanner For planimetrical calibration of LiDAR, the building is good feature which has great changes in height and continuous flat area in the top. The planimetry error(pitch, roll) is corrected by adjustment of height which is calculated from comparing ground control points(GCP) of building to laser scanning data. We can know scale correction of laser range by the comparison of LiDAR data and GCP is arranged at the end of scan angle where maximize the height error. The area for scale calibration have to be large flat and have almost same elevation. At 1000m for average flying height, The Accuracy of laser scanning data using LiDAR is within 110cm in height and ${\pm}$50cm in planmetry so we can use laser scanning data for generating 3D terrain surface, expecically digital surface model(DSM) which is difficult to measure by aerial photogrammetry in forest, coast, urban area of high buildings

  • PDF

Automatic Building Extraction Using LIDAR Data

  • Cho, Woo-Sug;Jwa, Yoon-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1137-1139
    • /
    • 2003
  • This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.

  • PDF

Parallel Processing of Airborne Laser Scanning Data Using a Hybrid Model Based on MPI and OpenMP (MPI와 OpenMP기반 하이브리드 모델을 이용한 항공 레이저 스캐닝 자료의 병렬 처리)

  • Han, Soo-Hee;Park, Il-Suk;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2012
  • In the present study, a parallel processing method running on a multi-core PC-Cluster is introduced to produce digital surface model (DSM) and digital terrain model (DTM) from huge airborne laser scanning data. A hybrid model using both message passing interface (MPI) and OpenMP was devised by revising a conventional MPI model which utilizes only MPI, and tested on a multi-core PC-Cluster for performance validation. In the results, the hybrid model has not shown better performances in the interpolation process to produce DSM, but the overall performance has turned out to be better by the help of reduced MPI calls. Additionally, scheduling function of OpenMP has revealed its ability to enhance the performance by controlling inequal overloads charged on cores induced by irregular distribution of airborne laser scanning data.

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

Ecological Restoration Monitoring of Open-Pit Mines using Airborne Laser Scanning (항공레이저측량 데이터를 이용한 노천광산 생태복원 모니터링)

  • Lee, Hyun-Jik;Yang, Seung-Ryong;Lee, Kyu-Man
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.101-107
    • /
    • 2008
  • Due to increased interest in environmental friendly ecological development and restoration, civil appeals concerning various environmental and landscape problems are continuously being lodged in cases where open-pit limestone mines are situated in places with eminent natural landscape. In this study, with the open-pit limestone mines located in the Baekdu mountain range as a study area, intends to contribute in recognition of various environmental problems and in the promotion of a reasonable restoration plan through high quality geo-spatial information. And it is planning to establish a method for sustained monitoring of the limestone mining by building intelligent national land information of the study area through combining Airborne Laser Scanning and Terrestrial LiDAR based surveying.

  • PDF

The Evaluation of Architectural Density on Urban District using Airborne Laser Scanning Data (항공레이저측량 자료를 이용한 시가지 건축밀도 평가에 관한 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2003
  • This study evaluated the architectural density of urban district using airborne laser scanning(ALS) that is a method used in urban planning, water resources and disaster prevention with high interest recently. First, digital elevation model(DEM) and digital surface model(DSM) was constructed from Light detection and ranging(LiDAR). For getting the height of building, ZONALMEAN filter was used in DEM and ZONALMAJORITY filter was used in DSM. This study compared the floor from filtering with the floor from survey and got standard error, which is ${\pm}0.199$ floor. Also, through the overlay and statistical analysis of total-area layer and zone layer, we could present floor area ratio by zone. As a result of comparison with floor area ratio between airborne laser scanning data and survey data, the standard error of floor area ratio shows ${\pm}2.68%$. Therefore, we expect that airborne laser scanning data can be a very efficient source to decision makers who set up landuse plan in near future.

  • PDF