• Title/Summary/Keyword: air-sea temperature

Search Result 366, Processing Time 0.026 seconds

Relationship between Sea Surface Temperature and Air Temperature Variation Depend on Time Scale at Coastal Stations in Korea (시간스케일에 따른 해양표면수온과 기온의 변동 및 상관연구)

  • 장이현;강용균;서영상
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.303-309
    • /
    • 2000
  • The relationship between air temperature and sea surface temperature and studied using the daily air temperature and sea surface temperature data for 25 years (1970~1994) at 9 coastal stations in Korea. Seasonal variations of air temperature have larger amplitudes than those of sea surface temperature. The seasonal variations of air temperature leads those of sea surface temperature by 2 to 3 weeks. The anomalies of sea surface temperature and air temperature with time scales more than 1 month are more ghighly correlated than those of short term, with time scales less than 1 month. Accumulated monthly anomalies of sea surface temperature and air temperature for 6 months shwoed higher correlation than the anomailes of each month. The magnitudes of sea surface temperature and air temperature anomalies are related with the duration of anomalies. Their magnitudes are large when the durations of anomalies are long.

  • PDF

Estimation of the air temperature over the sea using the satellite data

  • Kwon B. H.;Hong G. M.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.392-393
    • /
    • 2005
  • Due to the temporal and spatial simultaneity and the high-frequency repetition, the data set retrieved from the satellite observation is considered to be the most desirable ones for the study of air-sea interaction. With rapidly developing sensor technology, satellite-retrieved data has experienced improvement in the accuracy and the number of parameters. Nevertheless, since it is still impossible to directly measure the heat fluxes between air and sea, the bulk method is an exclusive way for the evaluation of the heat fluxes at the sea surface. It was noted that the large deviation of air temperature in the winter season by the linear regression despite good correlation coefficients. We propose a new algorithm based on the Fourier series with which the SST and the air temperature. We found that the mean of air temperature is a function of the mean of SST with the monthly gradient of SST inferred from the latitudinal variation of SST and the spectral energy of air temperature is related linearly to that of SST. An algorithm to obtain the air temperature over the sea was completed with a proper analysis on the relation between of air temperature and of SST. This algorithm was examined by buoy data and therefore the air temperature over the sea can be retrieved based on just satellite data.

  • PDF

MERITS OF COMBINATION OF ACTIVE AND PASSIVE MICROWAVE SENSORS FOR DEVELOPING ALGORITHMS OF SST AND SURFACE WIND SPEED

  • Shibata, Akira;Murakami, Hiroshi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.138-141
    • /
    • 2006
  • In developing algorithms to retrieve the sea surface temperature (SST) and sea surface wind speed from the Advanced Microwave Scanning Radiometer (AMSR) aboard the AQUA and the Advanced Earth Observation Satellite-II (ADEOS-II), data from the SeaWinds aboard ADEOS-II were helpful. Since features of the ocean microwave emission (Tb) related with ocean wind are not well understood, in case of using only AMSR data, combination of AMSR and SeaWinds revealed pronounced features about the ocean Tb. Two results from combinations of the two sensors were shown in this paper. One result was obtained at wind speeds over about 6m/s, in which the ocean Tb varies with the air-sea temperature difference, even though the SeaWinds wind speed is fixed at the same values. The ocean Tb increases as the air-sea temperature difference becomes negative, i.e., the boundary condition becomes unstable. This result indicates that the air temperature should be included in AMSR SST algorithm. The second result was obtained from comparison of two wind speeds between AMSR and SeaWinds. There is a small difference of two wind speeds, which might be related with several mechanisms, such as evaporation and plankton.

  • PDF

On Annual Variations of Sea Water and Air Temperatures, and Sea-Air Temperature Separation in the East Sea (Japan Sea) (동해의 수온, 기온 및 해면 온도차의 연변화)

  • KANG Yong Q.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.374-380
    • /
    • 1985
  • The annual variations of sea surface temperature (SST), air temperature (AT), and sea-air temperature separation (SST-AT) in the East Sea (Japan Sea) are studied by harmonic analysis of the monthly data in 2 by 2 degree rectangles. In the Tsushima Current region of the Japan Sea, the annual means of SST and AT are high due to warm water advection by the current, and the annual amplitudes of SST and AT are small because the annual variations of heat advection the the current and of the incoming solar radiation are almost out of phase each other. In summer the SST and the AT in the Japan Sea are almost the same, but in winter the SST is $6{\sim}10^{\circ}C$ higher than the AT. The physical processes responsible for the observed SST-AT in the Japan Sea and their consequences in the sea-air thermal interactions are discussed in this paper.

  • PDF

Relation between the Sea Surface Temperature and the Coastal Climate in Korea (우리나라의 연안기후와 해면수온과의 관계)

  • AHN Yoo-Shin;HAN Young-Ho;KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.566-574
    • /
    • 1984
  • The oceanic effect on the coastal climate, the air temperature and the humidity, in Korea was studied by using the meteorological and the sea surface temperature data compiled from 1962 to 1981. The fluctuation of sea surface temperature plays an important role in determining the air temperature and the humidity in the coastal area, The sea surface temperature is higher than the air temperature from September to March in the western coastal area, and from September to April in the southern and the eastern coastal areas, It is found that in March the air temperature begins to surpass the sea ourface temperature in the western coastal area, and in April in the southern and the eastern coastal areas. On the basis of the multiple regression analysis it is found that the oceanic effect on the coastal climate, the air temperature and the humidity, in the western coastal area is different that in the southern and the eastern coastal areas.

  • PDF

On Characteristics of Sea Breeze Front observed in Pusan Coastal Area, Korea (부산연안역에서 관측된 해풍전선의 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.629-636
    • /
    • 1997
  • We have analyzed focusing on the characteristics, speed and width of sea breeze front in Pusan coastal area using the meteorological data observed at Kimhae air force meteorological station because the presence of the front has Important effects on the dInstributlon of air pollution. The inland penetration of sea breeze front was recognized by steep variation of meteorological parameters(wind direction, wind speed, temperature, dew point temperature, air pressure, relative humidity) before and after its passage and the variation of $SO_2$ concentration, the speed and width of the sea breeze front was 2.07m/s and 217m, respectively. The structure and inland penetration of sea breeeze front should be taken into account whenever a model is to be compared with detailed field measurements.

  • PDF

Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea (한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증)

  • Han, Bo-Reum;Lim, Yuna;Kim, Hye-Jin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.153-162
    • /
    • 2018
  • The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

A Case Study on Causes and Characteristics of the Local Snowstorm in Jeju Island During 23 January 2016 (2016년 1월 23일 제주도에 일어난 국지규모 폭설의 원인과 특징에 관한 사례 연구)

  • Yeo, Ji-Hye;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.177-188
    • /
    • 2017
  • The development mechanisms of an unusual heavy snowfall event, which occurred in the coast of Jeju Island on 23 January 2016 were investigated through a thermodynamic approach. The formation of heavy snowfall was attributed to the enhanced thermal convection in two ways. First, the convection was enhanced by the air-sea temperature difference between the cold air advection in low-troposphere associated with the strengthening of the Siberian High and abnormal warm sea surface temperature, which is $1{\sim}2^{\circ}C$ higher than normal year over the Yellow Sea (YS). Second, the convective instability was increased by the vertical temperature gradient between the 7 days-sustained cold air advection in low-troposphere and the abrupt cold air intrusion in mid-troposphere induced by the southward shift of a cold cut-off vortex ($-45^{\circ}C$) at the formation stage. Compared to the twelve hours prior to the formation, the low-level moisture increased by 5% through the moisture supply from the YS, and the air-sea temperature difference increased from $18.5^{\circ}C$ to $28.5^{\circ}C$. Furthermore, the upward sensible (latent) heat flux increased 1.5 (1.2) times over the YS before the twelve hours prior to the formation. Thereafter, the sustained moisture supply and upward turbulent heat flux helped to maintain the snowstorm.

Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea) (東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因)

  • Kang, Yong Q
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.163-171
    • /
    • 1984
  • The atmospheric and oceanic influences on the air-sea thermal interaction in the East Sea (Japan Sea) are studied by means of an analytic model which is based on the heat budget of the ocean. By means of the model, the model, the annual variations of heat fluxes and air temperatures in the East Sea are analytically simulated. The model shows that the back radiation, the latent heat and the sensible heat increase with the warn water advection. The latent heat increases with the sea surface temperature (SST) but the back radiation and the sensible heat dcrease as the SST increases. In the East Sea, an increase of mean SST by 1.0$^{\circ}C$ yields an increase of mean air temperature by 1.2$^{\circ}C$. The heat storage in the ocean plays an important role in the annual variations of heat flux across the sea surface.

  • PDF

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF