• Title/Summary/Keyword: air-particle flow

Search Result 394, Processing Time 0.03 seconds

A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler (500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Yoon, Min-Ji;Lee, Byoung-Hwa;Kim, Seung-Mo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration (정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험)

  • Hong, Seungkwan;Miller, Frank;Taylor, James
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

Continuous Ice Slurry Production and Control of Ice Packing Factor in a Pipe for the District Cooling (지역냉방을 위한 아이스슬러리의 연속제조 및 배관내 빙충전율 조절)

  • Kwon, Jae-Sung;Lee, Yoon-Pyo;Lee, Sang-Hoon;Yoo, Ho-Seon;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.825-832
    • /
    • 2008
  • The ice slurry maker which can produce the ice slurry well for the ice particle in-flowing condition was revised. We removed the stagnant region at the top of the ice slurry maker, and IPF 40% could be realized. The IPF controller with 6 mm diameter holes at the bottom was designed. But the IPF controller with only 6 mm diameter holes could not control IPF in a pipe. This is because the ice particles at ice slurry flow exist homogeneously not only at the upper part but also at the bottom part. We changed the hole size of IPF controller surface using fine meshes and then, IPF in a pipe was increased by 70% when the hole size was $80{\mu}m$ and less.

Analysis of Coal Combustion and Particle Temperature Profiles in a Rotary Kiln for Production of Light-weight Aggregate (경량골재 로타리킬른의 운전최적화를 위한 석탄연소 및 원료입자 승온특성 해석)

  • Park, Jong-Keun;Ryu, Changkook;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Bottom ash from a coal-fired power plant is usually landfilled to a nearby site, which causes a growing environmental concern and increased operating costs. One way of recycling the bottom ash is to produce light-weight aggregate (LWA) using a rotary kiln. This study investigated the temperature profiles of raw LWA particles in a rotary kiln to identify the range of operating conditions appropriate for ideal bloating. For this purpose, a new simulation method was developed to integrate a 1-dimensional model for the bed of LWA particles and the computational fluid dynamics (CFD) for the fuel combustion and gas flow. The temperature of LWA particles was found very sensitive to the changes in the air preheating temperature and excess air ratio. Therefore, an accurate control of the operation parameters was essential to achieve the bloating of LWA particles without excessive sintering or melting.

Variation of Flow and Filtration Mechanisms in an Infiltration Trench Treating Highway Stormwater Runoff (고속도로 강우유출수 처리를 위한 침투도랑에서 흐름조건에 따른 여과기작 및 효율분석)

  • Guerra, Heidi B.;Yu, Jianghua;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • The particle filtration mechanisms in an infiltration trench should be varying due to the different hydraulic conditions during stormwater runoff. The understanding of these variations associated with different filtration mechanisms and their effect on the particle removal efficiency is of vital importance. Therefore, a LID (Low Impact Development) system comprising of an infiltration trench packed with gravel and woodchip was investigated during the monitoring of several independent rainfall events. A typical rainfall event was divided into separate regimes and their corresponding flow conditions as well as filtration mechanisms in the trench were analyzed. According to hydraulic conditions, it was found out that filtration changes between vertical and horizontal flows as well as between unsaturated, saturated, and partially-saturated flows. Particle separation efficiency was high (55-76%) and was mainly governed by physical straining during the unsaturated period. It was then enhanced by diffusion during the saturated period (75-95%). When the trench became partially saturated at the end of the rainfall event, the efficiency decreased which was believed to be due to the existence of a negatively charged air-water interface which limited the removal to positively charged particles.

Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame (메탄/수소 혼합 가스의 예혼합 선회 연소특성)

  • Kim, Han-Seok;Lee, Young-Duk;Choi, Won-Seok;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.

A Study on the Flow Analysis according to the change of Surface Roughness Gap in the Leisure Ship (레저선박의 표면조도 간격변화에 따른 유동해석에 관한 연구)

  • Oh, Woo-Jun;Cho, Dea-Hwan;Lee, Dong-Sub;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.243-244
    • /
    • 2009
  • From large to small vessels of the surface is not smooth. and The surface ship has a surface roughness. Because surface roughness increases the surface resistance and heat transfer, be considered when designing a ship that is an important design factor. Due to surface roughness study on flow around and due to changes in flow and turbulence intensity for the ongoing research is conducted. Roughness of the surface ships from the ship by air as well as machines can be widely applied. In this study, the surface roughness of the leisure marine interval, any change will affect the surface flow, area due to surface roughness for boundary-experimental study was performed.

  • PDF

A Study on Aerodynamic Characteristics of Flapping Motion (플래핑 운동의 공기역학적 특성에 관한 연구)

  • Kim Yoon-Joo;Oh Hyun-Taek;Chung Jin Taek;Choi Hang-Cheol;Kim Kwang-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2005
  • Birds and insects flap their wings to fly in the air and they can change their wing motions to do steering and maneuvering. Therefore, we created various wing motions with the parameters which affected flapping motion and evaluated the aerodynamic characteristics about those cases in this study. As the wing rotational velocity was fast and the rotational timing was advanced, the measured aerodynamic forces showed drastic increase near the end of stroke. The mean lift coefficient was increased until angle of attack of $50^{\circ}$ and showed the maximum value of 1.0. The maximum mean lift to drag ratio took place at angle of attack of $20^{\circ}$. Flow fields were also visualized around the wing using particle image velocimetry (PIV). From the flow visualization, leading-edge vortex was not shed at mid-stroke until angle of attack of $50^{\circ}$. But it was begun to shed at angle of attack of $60^{\circ}$.

  • PDF

Shape Design Improvement of the Rotary Cutting Machine to Improve the Dust Capturing Efficiency using CFD (회전톱 재단기의 미세먼지 집진효율 향상을 위한 형상 설계 개선)

  • Kim, G.H.;Rhee, H.N.;Jeon, W.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.508-511
    • /
    • 2011
  • Dust released from the rotating timber cutting process causes various kinds of diseases as well as safety issues. Although there were lots of efforts to reduce the amount of dust by installing large-sized dust collectors or by using expensive high-quality cutters, they proved to be not so effective. In this study we want to modify and improve the design of the rotary cutter system to prevent dust from being released to the environment as possible by using computational fluid dynamics (CFD) analysis. We have developed CFD models of the conventional cutter and several design modifications. Through the CFD analysis the characteristics of the air flow was predicted, and then the behavior of dust produced during the cutting process was analyzed for different designs. The most efficient design feature to capture dust inside the cutter as much as possible was chosen based on the CFD analysis results. Finally the prototype of the ratary saw machine was constructed and tested to check the dust capturing efficiency, which result is reasonably consistent with the predicted performance through the CFD analysis.

  • PDF

Hydrated Lime Roasting of Precious Metal Ores with A Cyclone Reactor

  • Cho, Chong S.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.53-60
    • /
    • 1997
  • The roasting of pyrite with a cyclone reactor have been studied in terms of investigating the reaction behavior of pyrite. The development of a fundamental model for pyrite oxidation and lime sulfation in a vertical cyclone reactor. The model assumes a chemical control shrinking core behavior for the pyrite and a fluid film control shrinking core behavior for the lime. The oxygen and sulphur dioxide concentrations and the energy balance for the gas, pyrite and lime particles are solved. The model was solved and characterized numerically. Experiments have been performed to study the influence of reaction parameters such as reactor temperatures, pyrite particle sizes, air flow rates, feeding rates, and mixing ratio of pyrite and lime. The oxidation and sulfation products were characterized chemically and physically.

  • PDF