DOI QR코드

DOI QR Code

Analysis of Coal Combustion and Particle Temperature Profiles in a Rotary Kiln for Production of Light-weight Aggregate

경량골재 로타리킬른의 운전최적화를 위한 석탄연소 및 원료입자 승온특성 해석

  • 박종근 (성균관대학교 기계공학부) ;
  • 류창국 (성균관대학교 기계공학부) ;
  • 김영주 (한국전력연구원 발전연구소 연료연소그룹)
  • Received : 2014.06.30
  • Accepted : 2014.08.15
  • Published : 2014.09.30

Abstract

Bottom ash from a coal-fired power plant is usually landfilled to a nearby site, which causes a growing environmental concern and increased operating costs. One way of recycling the bottom ash is to produce light-weight aggregate (LWA) using a rotary kiln. This study investigated the temperature profiles of raw LWA particles in a rotary kiln to identify the range of operating conditions appropriate for ideal bloating. For this purpose, a new simulation method was developed to integrate a 1-dimensional model for the bed of LWA particles and the computational fluid dynamics (CFD) for the fuel combustion and gas flow. The temperature of LWA particles was found very sensitive to the changes in the air preheating temperature and excess air ratio. Therefore, an accurate control of the operation parameters was essential to achieve the bloating of LWA particles without excessive sintering or melting.

Keywords

References

  1. S. Chandra, L. Berntsson, Lightweight Aggregate Concrete", Noyes publications, Norwich (2003) 369-400.
  2. 강신휴, 석탄회 재활용한 인공경량골재의 발포거동에 관한연구-Fe, C의 역할, 경기대학교 석사학위논문 (2011)
  3. 전국현, 표면개질 인공경량골재의 발포거동에 대한 연구, 경기대학교 석사학위논문 (2012)
  4. Fluent Inc. Fluent 6.3 user's guide, Lebanon, New Hampshire, USA (2006)
  5. C. Ryu, D. Shin, S. Choi, Combined bed combustion and gas flow simulation for a grate type incinerator, J. Air Waste Manag. Assoc., 52 (2002) 189-197. https://doi.org/10.1080/10473289.2002.10470769
  6. S. Niksa, Predicting the devolatilization behavior of any coal from its ultimate analysis, Combustion and Flame, 100 (1995) 384-394. https://doi.org/10.1016/0010-2180(94)00060-6
  7. C. Y. Wen , T. Z. Chaung, Entrainment coal gasification modeling, Ind. Eng. Chem. Proc. Des. Dev., 18 (1979) 684-695. https://doi.org/10.1021/i260072a020
  8. T. F. Smith, Z. F. Shen, J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transf., 104 (1982) 602-608. https://doi.org/10.1115/1.3245174
  9. A. Coppalle, P. Vervisch, The total emissivities of high-temperature flames", Combust. Flame, 49 (1983) 101-108. https://doi.org/10.1016/0010-2180(83)90154-2
  10. S.H. Tscheng, A.P. Watkinson, Convective heat transfer in rotary kiln, The Canadian J. Chem. Eng., 57 (1979) 433-443. https://doi.org/10.1002/cjce.5450570405
  11. K.S. Mujumdar, V.V. Ranade, Simulation of rotary cement kilns using a one-dimensional model, Chem. Eng. Res. Des., 84 (2006) 165-177. https://doi.org/10.1205/cherd.04193
  12. S.-Q. Li, L.-B. Ma, W. Wan and Q. Yao, A mathematical model of heat transfer in a rotary kiln thermo-reactor, Chem. Eng. Technol., 28 (2005) 1480-1489. https://doi.org/10.1002/ceat.200500241
  13. R. Zhang, H. Yang, J. Lu, Y. Wu, Theoretical and experimental analysis of bed-to-wall heat transfer in heat recovery processing, Powder Technol., 249 (2013) 186-195. https://doi.org/10.1016/j.powtec.2013.08.017
  14. 엄민재, 한택진, 이후경, 최상민, 로터리킬른 반응기 설계를 위한 성능해석 모형, 한국연소학회지, 18 (2013) 9-23. https://doi.org/10.15231/jksc.2013.18.3.009