• 제목/요약/키워드: air-fuel ratio

검색결과 804건 처리시간 0.024초

Open Loop 연료공급계의 L. P. G 차량에서 공기청정기 필터의 흡기저항이 차량성능에 미치는 영향 (An Effect of Car Performance Influenced to Absorbing Resistane of Air-cleaner Filter for the L. P. G Vehicle of Open Loop Fuel System)

  • 신용화;김기형;정종안
    • 한국안전학회지
    • /
    • 제10권4호
    • /
    • pp.36-46
    • /
    • 1995
  • The interest and purpose of this study is to control of air-fuel ratio and develop control device of a spark ignition LPG engine with adopting open loop fuel system. The air-fuel ratio is derived by considering airflow resistane of air cleaner element. The result shows that air-fuel ratio becomes more and more rich when airflow resistance increases. Experiments about the influence of airflow resistance on the engine performance, drivability and emissions are performed. Therefore, it is known that open-loop fuel system depends on the absorbing resistance of air-cleaner.

  • PDF

가스화 연료 연소시 단계적 연료주입 기술에 의한 질소산화물 저감 (Reduction of Nitrogen Oxide by Fuel Staged Technology on the Combustion of Gasification Fuel)

  • 채종성;조선희;전영남
    • 한국대기환경학회지
    • /
    • 제14권2호
    • /
    • pp.107-116
    • /
    • 1998
  • Coal gasification fuel has generally a lower calorific values than natural gas and also contains ammonia which is a main source of fuel NOx. Such a fuel is in need of the advanced technologies for the NOx reduction with higher combustion efficiency. Therefore fuel staged combustion was investigated for the fuel NOx control using a bench scale gas combustoi for the fuel NOx control. Parametric screening studies were performed with the variation of air ratio, retention length and reburning fuel. The NOx reduction efficiency was increased with an increase of total air ratio having optimum reburning air ratio differently, The Increased retention length of the reburning zone was preferable for NOx reduction. Hydrocarbonic reburning fuels like propane and butane were more effective for the NOx reduction efficiency than hydrogen fuel. The NOx concentration at exit was linearly increased according to the fuel-N the fuel.

  • PDF

LPG 엔진 모델링 및 ECM 설계에 관한 연구 (Development of An Engine Modeling and an Engine Control Module for an LPG Engine)

  • 심한섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.1-9
    • /
    • 1999
  • Liquid Petroleum Gas (LPG) has been widely used for commercial light-duty vehicles worldwide. Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline , it becomes more popular fuel for reducing exhaust emissions. In tihs study, mathematical models of air intake and fuel delivery system are presented, and a PI-controller is designed for air-fuel ratio control. Hardware and software of an engine control module (ECM) are designed for an LPG engine. The ECM is built using a Motorola MC68HC05. In order to control the air-fuel ratio at stoichiometry, the PI-control algorithm is implemented in the ECM. The experiment results show the proto LPG ECM and its control scheme perform well to meet the stoichiometric air-duel ratio requirement.

  • PDF

연료 조성에 따른 공연비 산정 (I) -기준 배기 조성으로서 Eltinge 차트- (Determination of Air Fuel Ratio according to Fuel Composition (I) -Eltinge Chart as a Reference Exhaust Composition-)

  • 엄인용;박찬준
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1548-1562
    • /
    • 2003
  • This paper is the first of several companion papers which compare the methods of Air-fuel ratio determination. There are many methods which calculate Air-Fuel ratio from exhaust emission. Most of them are based on the simple chemical equations, which use balance of atom, and the error of the calculation is negligible as far as the instrumentation accuracy is guaranteed. They assume homogeneous mixture and complete combustion to the extent of oxygen availability. Because of these simple assumptions, they cannot offer the information about the fuel distribution state and the malfunction of instrument. For these limitations, Eltinge offered new one based on stricter mathematical model. This result coincides with the others very well and gives more information about the mixture state and instrumentation. Consequently this might be a general solution for Air-fuel ratio determination and exhaust composition. The objects of the calculation, however, were not commercial fuels except gasoline and the compensation method of unburned hydrocarbon was not appropriate to recent analyzer. Moreover he did not consider the fuel which contains oxygen, such as methanol, ethanol and blend of gasoline-alcohol. In this paper, Eltinge chart is expanded to the arbitrary fuel composition as the reference exhaust compositions for the purpose of further discussions about Air-fuel ratio determination methods and the charts fur gasoline, diesel, methanol, M85, liquefied petroleum gas(LPG), natural gas(NG), propane, butane are illustrated.

공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향 (Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol)

  • 김대성;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

아세톤 형광을 이용한 공연비 측정 기법 연구 (An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence)

  • 박승재;허환일;오승묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

가솔린 엔진에서 액막 연료량 추정 및 이를 이용한 공연비 예측에 관한 연구 (Estimation of Wall Wetting Fuel at Intake Port and Model Based Prediction A/F in a S.I. Engine)

  • 황승환;이종화;박경석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.116-122
    • /
    • 1999
  • According to the stringent exhaust emission regulation, precise control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. The purpose of this study is to estimate of wall wetting fuel in the intake port and the inducted fuel mass was predicted by using wall wetting fuel model . The model coefficient($\alpha$,$\beta$) and fuel film mass on the port wall were determined from measured in-cylinder HC concentration using FRFID after injection off. The fuel film mass was increased, but $\alpha$(ratio of directly inducted fuel mass into cylinder from injected fuel mass) was decreased with increasing load at the same engine speed. $\beta$is nearly constant value(0.8~0.9). when injected fuel mass is varied at 1500rpm , the calculated air fuel ratio using well wetting fuel model was nearly the same as measured by UEGO.

  • PDF

액상 LPG 분사 엔진의 인젝터 제어 로직 (Injector Control Logic for a Liquid Phase LPG Injection Engine)

  • 조성우;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구 (Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor)

  • 조봉국;최도욱;김규보;장영준;송주헌;전충환
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.