• Title/Summary/Keyword: air replacement

Search Result 345, Processing Time 0.023 seconds

Properties of the Concrete using the Waste Foundry Sand Powder by Cement Replacement (폐주물사 미분말을 시멘트 대체재료로 사용한 콘크리트의 특성)

  • Woo Jong-Kwon;Ban Joo-Hwan;Ryu Hyun-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.57-61
    • /
    • 2006
  • Waste foundry sand of industrial waste which is happening by vast quantity according to fast development of industry has much the occurrence amount and processing method is depended on reclamation, and is using by fine aggregate for construction by recycling method among others. In this research Waste foundry sand powder into cement replace fare use possibility availability judge wish to Slump and air content decreased the replacement ratio increases by concrete special quality that do not harden according to experiment result, and unit capacity mass and bleeding increased the replacement ratio increases. Hardening concrete intensity special quality displayed strength improvement to replacement ratio 20%, and tendency that watertightness increases most in replacement ratio loft in watertight property appear. Considering the strength and watertight properties, the adequate usage of waste foundry sand powder is the 10% of replacement ratio.

  • PDF

A Study on the Optimum Amount of Waste Foundry Sand and Flyash in Concrete (폐주물사와 플라이애쉬의 적정 사용량에 관한 연구)

  • Yang, Joo-Kyoung;Moon, Young-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • The most of waste foundry sands(WFS) have been discarded. It is very urgent for our country to make a study on recycling of WFS. The one of recycling method of WFS is using them as fine aggregate for concrete. This study provided the optimum amount of WFS and flyash when WFS and flyash were used together in concrete. The concrete made with 60% WFS fine aggregate replacement showed higher compressive strength, splitting tensile strength and modulus of elasticity than normal concrete. In the case that the flyash and WFS are replaced together, the compressive strength and splitting tensile strength were improved at flyash replacement ratio $10%{\sim}20%$ and WFS replacement ratio $40%{\sim}60%$. The increase of WFS and flyash replacement led lower air content. While the increase of WFS replacement led lower slump, the increase of flyash replacement led higher slump.

Study on the mix proprotion and the thermal crack of Ultra High Strength Concrete (초고강도 콘크리트의 배합 및 온도균열에 대한 연구)

  • Moon, Han-Young;Kim, Byoung-Kwon;Son, Young-Hyun;Kang, Hoon;Kim, Jeong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we manufactured the ultra-high strength concrete using mineral admixture which is easily workable. From the test results of compressive strength, It is concluded that the proper replacement ratio of silica fume should not exceed to 10% and the replacement of slag is more effective that the replacement of fly ash to gain very high compressive strength. Thermal stress analysis is conducted to find the way of controlling the thermal crack of ultra-high strength concrete. As results of thermal stress analysis, it was found that reducing placing temperature of concrete(pre-cooling) is effective to reduce thermal crack and placing concrete in high air temperature is more effective than placing concrete in low air temperature.

  • PDF

The Dynamics Performance Evaluation for Type of Replacement Ratio of the Polysilicon Sludge and Fly ash (폴리실리콘 슬러지와 플라이애쉬 치환율별 역학성능 평가)

  • Moon, Ji-Hwan;Park, Jong-Pil;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.85-86
    • /
    • 2012
  • This application plan is hasty prepared with the actual condition in which the majority is reclaimed by the waste with the marine and the polysilicon sludge, that is the main raw material of the solar pannel support, does. In this research, by using OPC and Fly ash, the applicability as the blending material of the polysilicon sludge was analyze and it tried to contribute to the waste reduction afterward. The replacement ratio of the sludge was set to 5. 10, 15, 20(%) with the experiment based on the based test result and the air flow rate, liquidity, flexural strength, and compressive strength was measured. The liquidity was reduced in spite of as the replacement ratio of the sludge increased and the air flow rate increased.

  • PDF

The Strength Properties of Concrete according to Curing Method (양생방법에 따른 콘크리트의 강도특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Yun, Yong-Ho;Son, Sang-Hun;Kim, Jeong-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.545-548
    • /
    • 2006
  • This study has been carried out to examine the properties of concrete according to replacement ratio and curing method of fly ash, in order to increase utilization of it. As the result of experiments, the 7 days of early age strength presented around 20MPa, up to 20% of replacement ratio, which is almost the same strength as non-replacement. However, when the replacement ratio was 30%, the strength was decreased to 16MPa, as 20% reduction compared to the non-replacement condition. In 365 days of long term aging, the strength was 5% higher, up to 20% of the replacement ratio, due to the pozzolanic reaction of fly ash. When the replacement ratio was 30%, it presented similar strength development as the non-replacement condition. Steam curing and autoclave curing increased the short age strength, regardless of the replacement ratio of fly ash; however, they don't have an effect on increasing the 365 days of long term strength. Water curing showed high strength development after 28 days, 51.81MPa, which is around 30% higher than air curing, 38.9MPa, steam curing, 38.6MPa, and autoclave curing, 39MPa. Therefore, water curing was examined as one of the very effective curing methods for developing long term strength of concrete.

  • PDF

Changes in microbial phase by period after hepa filter replacement in King oyster(Pleurotus eryngii) mushroom cultivation (큰느타리 재배사에서 헤파필터 교체 이후 기간에 따른 미생물상 변화)

  • Park, Hye-Sung;Min, Gyong-Jin;Lee, Eun-Ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.398-402
    • /
    • 2020
  • This study was conducted to set up a proper replacement cycle of High Efficiency Particulate Air (HEPA) filters by observing the microbial populations in the air of the cultivation house of Pleurotus eryngii, before and after HEPA filter replacement at different periods. The density of bacteria and fungi in the air during each cultivation stage was measured using a sampler before the replacement of the HEPA filter. The results showed that airborne microorganisms had the highest density in the mushroom medium preparation room, with 169.7 CFU/㎥ of bacteria and 570 CFU/㎥ of fungi, and the removed old spaun had 126.3 CFU/㎥ of bacteria and 560 CFU/㎥ of fungi. The density of bacteria and fungi in the air at each cultivation stage before the replacement of the HEPA filter was 169.7 CFU/㎥ and 570 CFU/㎥, and 126.3 CFU/㎥ and 560 CFU/㎥, during the medium production and harvesting processes, respectively. After the replacement of the HEPA filter, the bacterial density was the lowest in the incubation room and the fungal density was the lowest in the cooling room. The microbial populations isolated at each period consisted of seven genera and seven species before the replacement, including Cladosporium sp., six genera and six species after 1 month of replacement, including Penicillium sp., 5 genera and 7 species after 3 months of replacement, including Mucor plumbeus, and 5 genera and 12 species, 5 genera and 10 species, and 5 genera and 10 species, 4, 5, and 6 months after the replacement, respectively, including Penicillium brevicompactum. During the period after replacement, the species were diversified and their number increased. The density of airborne microorganisms decreased drastically after the replacement of the HEPA filter. Its lowest value was recorded after 2 months of replacement, and it increased gradually afterwards, reaching a level similar to or higher than that of the pre-replacement period. Therefore, it was concluded that replacing the HEPA filter every 6 months is effective for reducing contamination.

The Experimental Study on High Strength Concrete of High Volume Fly-Ash (플라이애쉬를 대량 사용한 고강도 콘크리트에 관한 실험적 연구)

  • 이동하;서동훈;전판근;백민수;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.275-280
    • /
    • 2002
  • To study of high volume fly -ash concrete replace cement and fine aggregate together. Proportion consideration economy cost and performance improve replacement high volume fly-ash. Experimentation study of high-strength which cement about fly-ash replacement maximum 50%Flash concrete tested slump, air contest, setting and Hardening concrete tested day of age 1, 3, 7, 28, 91 compression strength in underwater curing. Purpose of study is consultation materials in field that variety of fly ash replacement concrete mix proportion comparison and valuation.

  • PDF

A Study on the Mechanical Characteristics of the replaced concrete by the Waste Glass Powder (폐류리분미를 사용한 콘크리트의 역학적 특성에 관한 연구)

  • 김명재;송창영;정호철;설광욱;부척량
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.247-253
    • /
    • 1997
  • This study performed the experimental research comparing mechanical characteristics of the concrete replaced by the waste glass powder with the non-replaced concrete. The experimental parameters are kinds of the waste glass powder and replacement rate of the waste glass powder on the cement. As as result, the slump value, the flow value and the amount of air were decreased as the waste glass powder replacement rate increased, and the strength was increased when the waste glass powder replacement rate is 5%~15%.

  • PDF

Analysis of Cooling Effect Using Compressed Cold Air in Turing Process (압축냉각공기를 이용한 선삭가공시 냉각효과 해석)

  • Kwak, Seung-Yong;Kim, Dong-Kil;Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.