• Title/Summary/Keyword: air pollution control

Search Result 527, Processing Time 0.026 seconds

Recent Trends of Vessel-Source Pollution (선박 기인 오염물의 처리동향 및 대책)

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.97-104
    • /
    • 2006
  • Though stringent guidelines are in place to protect the harbor environment, pollution from ships, from the ports terminals. Discharge from the ballast tanks of ships, though illegal, does occur. Such vessels, arriving from distant ports of call, can introduce exotic species of plants and animals, causing disruption of the local food web. Discharges rich in nitrogen can generate the rapid growth of plankton, eventually leading to a condition known as red tide that is lethal to some coastal organisms. In addition to the harbor's negative effects on marine organisms, the diesel engines of the ships and the trucks that haul cargo to and from the ports release large volumes of diesel exhaust into the atmosphere. IMO(International Maritime Organization) is strongly proceeding with adoption of a new maritime environment convention and coming into effect for regulation enhancement about the pollutants which are happened in a ship recently. Study about the conventions that our country currently comes into effect, and there is during forwarding and correspondence must be performed effectively. In this paper, International convention on the control of harmful Anti-Fouling system on ship, Ballast water management, Prevention of air pollution from ships, treat a main pending problem in ocean related environmental regulation convention.

  • PDF

Characterizing Par ticle Matter on the Main Section of the Seoul Subway Line-2 and Developing Fine Particle Pollution Map (서울시 지하철 2호선 본선구간의 입자상물질 농도 특성 및 미세분진의 오염지도 개발)

  • Lee, Eun-Sun;Park, Min-Bin;Lee, Tae-Jung;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.216-232
    • /
    • 2016
  • In present, the Seoul City is undergoing traffic congestion problems caused by rapid urbanization and population growth. Thus the City government has reorganized the mass transportation system since 2004 and the subway has become a very important means for public transit. Since the subway system is typically a closed environment, the indoor air quality issues have often raised by the public. Especially since a huge amount of PM (particulate matter) is emitted from ground tunnels passing through the subway train, it is now necessary to assess the characteristics and behaviors of fine PM inside the tunnel. In this study, the concentration patterns of $PM_1$, $PM_{2.5}$, and $PM_{10}$ in the Seoul subway line-2 were analyzed by real-time measurement during winter (Jan 13, 2015) and summer (Aug 7, 2015). The line-2 consisting of 51 stations is the most busy circular line in Seoul having the railway of 60.2 km length. The the one-day average $PM_{10}$ concentrations were $148{\mu}g/m^3$ in winter and $66.3{\mu}g/m^3$ in summer and $PM_{2.5}$ concentrations were $118{\mu}g/m^3$ and $58.5{\mu}g/m^3$, respectively. The $PM_{2.5}/PM_{10}$ ratio in the underground tunnel was lower than the outdoor ratio and also the ratio in summer is higher than in winter. Further the study examined structural types of underground subsections to explain the patterns of elevated PM concentrations in the line-2. The subsections showing high PM concentration have longer track, shorter curvature radius, and farther from the outdoor stations. We also estimated the outdoor PM concentrations near each station by a spatial statistical analysis using the $PM_{10}$ data obtained from the 40 Seoul Monitoring Sites, and further we calculated $PM_{2.5}/PM_{10}$ and $PM_1/PM_{10}$ mass ratios near the outdoor subway stations by using our observed outdoor $PM_1$, $PM_{2.5}$, and $PM_{10}$ data. Finally, we could develop pollution maps for outdoor $PM_1$ and $PM_{2.5}$ near the line-2 by using the kriging method in spatial analysis. This methodology may help to utilize existing $PM_{10}$ database when managing and control fine particle problems in Korea.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Pulmonary Function and Its Influence Factors of Residents in Yeosu Industrial Complex

  • Hong, Eun-Ju;Ahn, Gi-Sub;Chung, Eun-Kyung;Guo, Xinbiao;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.799-809
    • /
    • 2011
  • Objectives: This study is aimed at identifying the influential factors on the pulmonary function of ordinary residents in the surrounding areas of Yeosu Industrial Complex. Methods: The PFT (Pulmonary Function Test) was conducted on the target residents numbering 989 people (male 361, female 628). The exposed group (813 people) resided within the radius of 5km from Yeosu Industrial Complex and the control group (176 people) resided in the radius of more than 15 km from May 2007 to November 2007. The survey also took into account other factors including personal characteristics, life habits, respiratory diseases and allergic symptoms, medical histories, and the living environments of the residents in order to further identify influential factors on pulmonary function. Result: When comparing the PFT values of the exposure groups to the control group of the same city, values of the exposure groups were meaningfully lower with an %$FEV_1$ of 107.05% and %FVC of 100.28%. Conversely, the control group reported an %$FEV_1$ and %FVC of 107.26% and 102.85% respectively, indicating that ambient air pollutants reduce lung function. The odds ratio of asthma diagnosis history increased when a subjects residence was close to a heavily trafficked road, traffic amount was huge, a bed was used, and the family had less than four members. However the results were not statistically meaningful. The odds ratios of abnormal pulmonary function were statistically higher among those with asthma(OR=4.29, CI=1.75-10.56), wheezing (OR=2.59, CI=1.24-5.41), and nasal congestion (OR=2.87, CI=1.36-6.08) (p<0.01). The factors affecting $FEV_1$ were symptoms including asthma, passive smoking and allergic eye disease ($R^2$=0.049, p<0.001). For the FVC symptoms including asthma ($R^2$=0.014, p<0.001) were measured. The analysis showed that FVC decreased with increases in $O_3$ and CO(p<0.01). Furthermore, $FEV_1$ decreased with increases in $O_3$(p<0.01). Conclusions: These results will provide preliminary data for establishing responsive measures to protect the health of residents in industrial complexes from air pollution, and to develop lasting environmental health policies.

Evaluation of Photochemical Pollution during Transport of Air Pollutants in Spring over the East China Sea

  • Sadanaga, Yasuhiro;Kobashi, Tadashi;Yuba, Akie;Kato, Shungo;Kajii, Yoshizumi;Takami, Akinori;Bandow, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.237-246
    • /
    • 2015
  • We conducted intensive observations of ozone, CO, $NO_x$ (=NO and $NO_2$), $NO_y$ (total odd nitrogen species including particulate nitrate) and total nitrate (the sum of gaseous $HNO_3$ and particulate nitrate) at Cape Hedo, Okinawa, Japan, from 19 March to 3 April, 2009, to investigate ozone production during long-range transport from the Asian continent. Ozone production efficiency (OPE) was used to evaluate photochemical ozone production. OPE is defined as the number of molecules of ozone produced photochemically during the lifetime of a $NO_x$ molecule. OPE is calculated by the ratio of the concentration increase of ozone to that of $NO_z$ ($=NO_y-NO_x$). Average OPE during observation was estimated to be $12.6{\pm}0.5$, but concentrations of ozone increased nonlinearly with those of $NO_z$. This non-linearity suggests that OPE depends on air mass origin and $NO_z$ concentrations. There were very different values of OPE for the same air mass origin, so that only the air mass origin alone does not control OPE. OPE was low when $NO_z$ concentration was high. We examined the correlation between $NO_z$ and $CO/NO_y$ ratios, which we used instead of the ratio of non-methane hydrocarbons (NMHCs) to $NO_x$. The $CO/NO_y$ ratios decreased with increasing $NO_z$ concentrations. These results indicate that competition reactions of OH with NMHCs and $NO_2$ are the rate determining steps of photochemical ozone production during long-range transport from the Asian continent to Cape Hedo, for high concentrations of nitrogen oxides.

Analysis on Retrofit Method to Improve TP treatment efficiency in Air-vent SBR process installed MWTP and RCSTP during winter based on Modeling (모델링 기반의 선회와류식 SBR 공법이 적용된 하수처리장 및 마을하수도 동절기 총인 개선방안 연구)

  • Lee, Hyunseop;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.251-256
    • /
    • 2019
  • In the upstream and nearby areas of the water source, there are many areas where the sewerage penetration rate is relatively low due to development restrictions. This has been continuously affecting the pollution of the water source. As a measure to prevent this, method of distributing sewage and improving existing facilities are suggested. In this study, A MWTP(Municipal Watewater Treatment Plant) using the Air-vent SBR process located at upstream of An-dong and Im-ha Dam was selected as a modeling facility. And, the retrofit method to improve the effluent from RCSTP(Rural Community Sewage Tratment Plant) was induced based on A MWTP modeling result. The model construction and verification were carried out based on the operating data for 5 years (2012 ~ 2016). As a result, it was analyzed that the water quality of the effluent during the winter could be improved through control of cycle time in Air-vent SBR process and decreasing SRT (BOD: 1.8%, COD: 54.5%, SS: 4.3%, T-N; 0.8% and T-P: 7.7%). This research suggests that result of this research can be utilized as a retrofit method to improve the effluent overall treatment efficiency of the MWTP and the RCSTP which have similar operation process.

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

Physico-Mechanical Properties and Formaldehyde Abatement of Particleboard Mixed with Gingko Tree Leaves (은행나무 잎을 혼합하여 제조한 파티클보드의 물리.기계적 성질과 포름알데히드 저감효과)

  • Park, Sang-Bum
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2006
  • This study was conducted to find potentialities of the leaves of gingko tree (Gingko biloba L.) which has been planted as a roadside tree in Korea because of its resistance on air pollution, insect, fungi, etc. Various amounts of the leaves were mixed with wasted wood particles to manufacture particleboard. Their influences on physical and mechanical properties and the formaldehyde emission of PB were investigated. Physical and mechanical properties, such as density, modulus of rupture (MOR), and internal bond (IB) strength, of manufactured particleboard were not much different from those of control board. Formaldehyde emission values were decreased with increasing amount of leaves in PB prepared. Especially, particleboard made with 3 percent of leaves was decreased to $1.66mg/{\ell}$ in formaldehyde emission, which is about 40% lower emission than that of control. From these results, the leaves of gingko tree may be considered as a formaldehyde emission lowering additive in a functional PB manufacturing process.

  • PDF

A Review on Diesel Engine Exhaust and Lung Cancer Risks (디젤엔진 배출물질과 폐암발생 위험에 관한 고찰)

  • Bae, Hyun-Joo;Park, Jeong-Im
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.277-290
    • /
    • 2012
  • Objectives: Diesel engine exhaust (DE) accounts for a significant percentage of air pollutants that are associated with various health outcomes including mortality, asthma, chronic bronchitis, respiratory tract infection, etc. In June, 2012, the International Agency for Research on Cancer (IARC) released the assessment results that classified DE as "carcinogenic to humans" (Group 1). This review is therefore focused on the lung cancer risks of DE. Methods: Literatures were searched using PubMed with key words of "diesel exhaust", "lung cancer", and other related terms for the period between 1990 and 2012. A total of 295 articles were searched and sixteen epidemiologic studies were identified as potentially relevant. Results: Sixteen epidemiologic studies about the lung cancer risks of workers exposed to DE in various occupations were summarized in two tables, 1) retrospective cohort studies and 2) case-control studies. Increased lung cancer risk, although not always smoking adjusted, was observed in 6 out of 8 retrospective cohort studies and 4 of 8 case-control studies. Conclusions: Diesel fuel is widely used in Korea. Exposure to DE is confirmed to be a human carcinogen by IARC. Noncancer health risks of DE also need careful attention as DE is a major source of fine-particle pollution. Along with the efforts for reducing the DE emission through improvements of diesel engines and fuel, and the use of alternative fuels, comprehensive health risk assessment of DE should be conducted to minimize the adverse health effects.

A Study on the Effect of Compression Ratio and EGR on the Partial Premixed Diesel Compressed Ignition Combustion Engine Applied with the Split Injection Method (2단 분사방식을 적용한 부분 예혼합 디젤압축착화연소엔진의 성능에 미치는 압축비 및 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kang, Woo;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-38
    • /
    • 2006
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition(HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. In addition, this study confirmed the possibility of securing optimum fuel economy emission reduction in the IMEP 8bar range(which could not be achieved with existing partially premixed combustion) through forced charging, exhaust gas recirculation(EGR), compression ratio change and application of DOC catalyst.