• Title/Summary/Keyword: air kerma

Search Result 70, Processing Time 0.029 seconds

Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays (Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae;Oh, Jang-Jin;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • Central axis percentage depth-doses, P(%), were measured at the points from the 2.5cm depth of reference point to 20 cm depth with 2.5 cm interval. Distance from the X-ray target to the water phantom($30{\times}30{\times}30cm^3$) surface was 1 m, and at this point three different beam sizes of $5cm{\phi},\;10cm{\phi},\;and\;15cm{\phi}$ were used. While the X-ray tube voltage varied from 150 to 250 kV, the tube current remained constant at 5 mA. Absorbed dose rate in water, $\dot{D}_w$, was determined using the air kerma calibration factor, $N_k$, which was derived from the exposure calibration factor, $N_x$, of the NE 2571 ion chamber. The reference exposure rate, $\dot{X}_c$, was measured using the Exradin A-2 ion chamber calibrated at ETL, Japan. The half value layers of the X-rays determined to meet ETL calibration qualities. The absorbed dose rates determined at the calibration point were compared to the values obtained from Burlin's general cavity theory, and the percentage depth-dose values determined from $N_k$ showed a good agreement with the values of the published depth dose data(BJR Suppl. 17).

  • PDF

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Development of a Dose Calibration Program Based on an Absorbed Dose-to-Water Standard (물 흡수선량 표준에 기반한 선량교정 프로그램 개발)

  • 신동오;김성훈;박성용;서원섭;이창건;최진호;전하정;안희경;강진오
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.175-183
    • /
    • 2003
  • Absorbed dose dosimetry protocols of high energy photon and electron beams, which are widely used and based on an air kerma (or exposure) calibration factors, have somewhat complex formalism and limitations for improving dosimetric accuracy due to the uncertainty of the physical parameters used. Recently, the IAEA and the AAPM published the absorbed dose to water-based dosimetry protocols(IAEA TRS-398 and AAPM TG-51). The dose calibration programs for these two protocols were developed. This program for high energy photon and electron beams was also developed for users to use in a window environment using the Visual C++ language. The formalism and physical parameters of these two protocols were strictly applied to the program. The tables and graphs of the physical data, and the information of ion chambers were numericalized for their incorporation into a database. This program can be useful in developing new dosimetry protocols in Korea.

  • PDF

Study on the Compatibility for an Ir-192 Source Manufactured by Korea Atomic Energy Research Institute (KAERI) in GammaMed Brachytherapy Machine (한국원자력연구소에서 개발한 Ir-192 선원의 감마메드 치료기 호환성 연구)

  • Jeong, Dong-Hyeok;Lee, Kang-Kyoo;Kim, Soo-Kon;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2010
  • The compatibility with GammaMed-12i brachytherapy machine for an Ir-192 encapsulated source (IRRS20, KAERI, Korea) manufactured by Korea atomic energy research institute (KAERI) has been investigated. As a mechanical testing of compatibility, precise measurement of step movement with channels, measurement of curvature of radius for wire, and emergency return testing were performed. Periodic measurements of air kerma strength for 45 days were carried out to evaluate decay characteristics of Ir-192 radioisotope and comparison of dose distributions in phantom between KAERI and old sources previously used were performed by film dosimetry. KAERI source has a good compatibility with GammaMed12i machine as a result of mechanical testing. There are in good agreement with calculated values in activity characteristics and there were small differences in dose distributions around the source in comparison between KAERI and old source.

Intercomparison of the KAERI Reference Photon and Beta Radiation Measurements (한국원자력연구소 기준 광자 및 베타선장 측정의 국제상호비교)

  • Chang, Si-Yeong;Kim, Bong-Hwan;Kim, Jang-Lyul;McDonald, J.C.;Murphy, M.K.
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.255-262
    • /
    • 1996
  • This paper describes the results of intercomparison measurements of KAERI reference photon and beta radiation fields between the KAERI and the PNNL(Pacific Northwest National Laboratory), recently performed at KAERI radiation calibration and dosimetry laboratory on the basis of the ANSI N13.11 criteria for personal dosimeter performance test. Each laboratory used her own radiation detectors or measurement devices traceable to her national primary standard in measuring the exposure rates for photon fields, the absorbed dose rates for beta radiation fields. The agreements in reference radiation measurements between two laboratories were found to be less than ${\pm}2.0%$ for photon fields, ${\pm}1.0%$ for beta radiation fields. Therefore, it could be concluded that KAERI reference radiation fields comply well with the international standard and thus can further serve as a national basis for the researches and developments in radiation protection dosimetry in Korea.

  • PDF

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

Evaluation of Linearity Air Kerma Applied to the IEC 60601-2-45 Standard in Mammographic X-ray (유방촬영용 X선 진단장치에서 IEC 60601-2-45 표준규격을 적용한 직선성 평가)

  • Hong, Dong-Hee;Jung, Hong-Ryang;Lim, Cheong-Hwan;Han, Beom-Hee;Han, Sang-Hyun;Lee, Sang-Ho;Mo, Eun-Hee;Kim, Ki-Jung;Lee, Mi-Hwa;You, In-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • The quality control items of mammography devices in South Korea do not include the linearity, which is required by international standards. The linearity is a requirement for the adjustment of radiation dose and radiation quality. This study tested the linearity, which was suitable for the IEC 60601-2-45 standard, of the 5 mammography devices. All showed adequate results. Consistent measurement management is required for more developed quality control in the future.