• Title/Summary/Keyword: air humidity

Search Result 1,842, Processing Time 0.028 seconds

A study on unmanned watch system using ubiquitous sensor network technology (유비쿼터스 센서 네트워크 기술을 활용한 무인감시체계 연구)

  • Wee, Kyoum-Bok
    • Journal of National Security and Military Science
    • /
    • s.7
    • /
    • pp.271-303
    • /
    • 2009
  • "Ubiquitous sensor network" definition is this-Someone attaches electro-magnetic tag everything which needs communication between man to man, man to material and material to material(Ubiquitous). By using attached every electro-magnetic tag, someone detects it's native information as well as environmental information such as temperature, humidity, pollution and infiltration information(Sensor). someone connects it realtime network and manage generated information(Network). 21st century's war is joint combined operation connecting with ground, sea and air smoothly in digitalized war field, and is systematic war provided realtime information from sensor to shooter. So, it needs dramatic development on watch reconnaissance, command and control, pinpoint strike etc. Ubiquitous computing and network technologies are essential in national defense to operate 21st century style war. It is possible to use many parts such as USN combined smart dust and sensor network to protect friend unit as well as to watch enemy's deep area by unmanned reconnaissance, wearable computer upgrading soldier's operational ability and combat power dramatically, RFID which can be used material management as well as on time support. Especially, unmanned watch system using USN is core part to transit network centric military service and to get national defense efficiency which overcome the dilemma of national defense person resource reducing, and upgrade guard quality level, and improve combat power by normalizing guardian's bio rhythm. According to the test result of sensor network unmanned watch system, it needs more effort and time to stabilize because of low USN technology maturity and using maturity. In the future, USN unmanned watch system project must be decided the application scope such as application area and starting point by evaluating technology maturity and using maturity. And when you decide application scope, you must consider not only short period goal as cost reduction, soldier decrease and guard power upgrade but also long period goal as advanced defense ability strength. You must build basic infra in advance such as light cable network, frequency allocation and power facility etc. First of all, it must get budget guarantee and driving force for USN unmanned watch system project related to defense policy. You must forwarded the USN project assuming posses of operation skill as procedure, system, standard, training in advance. Operational skill posses is come from step by step application strategy such as test phase, introduction phase, spread phase, stabilization phase and also repeated test application taking example project.

  • PDF

Growth Model of Common Ice Plant (Mesembryanthemum crystallinum L.) Using Expolinear Functions in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 Common Ice Plant의 생육 모델)

  • Cha, Mi-Kyung;Kim, Ju-Sung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.493-498
    • /
    • 2014
  • The objective of this study was to make growth and yield models for common ice plant (Mesembryanthemum crystallinum L.) using expolinear functional equations in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-hours photoperiod were used, and the light intensity was $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Nutrient film systems with three layers were used for plant growth. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Leaf area, shoot fresh and dry weights, light use efficiency of common ice plant as function of days after transplanting, accumulative temperature and accumulative radiation were analyzed. Leaf area, shoot fresh and dry weights per area were described using an expolinear equation. A linear relationship between shoot dry and fresh weights was observed. Light use efficiency of common ice plant was $3.3g{\cdot}MJ^{-1}$ at 30 days after transplanting. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of common ice plant in a closed plant production system.

A Model to Forecast Rice Blast Disease Based on Weather Indexing (기상지수에 의한 벼도열병 예찰의 한 모델)

  • Kim Choong-Hoe;MacKenzie D. R.;Rush M. C.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.210-216
    • /
    • 1987
  • A computer program written to predict blast occurrence based on micro climatic events was developed and tested as an on-site microcomputer in field plots in 1984 and 1985. A microcomputer unit operating on alkaline batteries; continuously monitored air temperature, leaf wetness, and relative humidity; interpreted the microclimate information in relation to rice blast development and displayed daily values (0-8) of blast units of severity (BUS). Cumulative daily BUS values (CBUS) were highly correlated with blast development on the two susceptible cultivars, M-201 and Brazos grown in field plots. When CBUS values were used to predict the logit of disease proportions, the average coefficients of determination $(R^2)$ between these two factors were 71 to $91\%$, depending on cultivar and year. This was a significant improvement when compared to 61 to $79\%$ when days were used as a predictor of logit disease severity. The ability of CBUS to predict logit disease severity was slightly less with Brazos than M-201. This is significant inasmuch as Brazos showed field resistance at mid-sea­son. The results in this study indicate that the model has the potential for future use and that the model could be improved by incorporating other variables associated with host plants and pathogen races in addition to the key environmental variables.

  • PDF

Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method (인공신경망 기법을 이용한 태풍 강도 및 진로 예측)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.294-304
    • /
    • 2009
  • A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.

Identification of pathogen and actual culture state of king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 주요재배시 실태조사 및 병원균 분리동정)

  • Ha, Tai-Moon;Chi, Jeong-Hyun;Ju, Young-Cheuol;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.4 no.4
    • /
    • pp.135-143
    • /
    • 2006
  • We have investigated cultural circumstance and given condition of king oyster mushroom(Pleurotus eryngii) growing farmer. We collected many pathogens from King oyster mushroom growing farmer and identified with chemicobiological test and microscope. Most of investigated farmers neglected their's growing room cleaning and washing, after harvesting At pin-heading induction time, humidity degree in growing room was kept of high level and Air ventilation volume was so little that fruit-body formation ratio was low. The collected pathogens were twenty eight strains and identified with Pseudomonas sp., Trichoderma sp. mostly. During the spawn running time and pin-heading induction time, contamination by Trichoderma sp. occurred mostly, but during the fruit-body growing time, contamination by Pseudomonas sp., Erwinia sp. etc, occurred.

  • PDF

The Study about Improvement of Neuro Energy Decreased by Energy Saving (에너지절감에 의해 감소되는 뉴로에너지의 증강에 관한 연구)

  • Kim, Myung-Ho;Kang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.715-721
    • /
    • 2018
  • This study examined energy saving and elevating the worker's neuro energy (comfort, concentration, physical, and psychological stability) by compensating for the unpleasant tactile sensation to stimulate auditory and olfactory senses and reduce energy consumption. The experiment was conducted in an environment test room under the test conditions of temperature $25[^{\circ}C]$, relative humidity 50[RH%], illumination 1,000[lux] and air current speed 0.02[m/sec] by stimulating the auditory senses with a 1/f change in rhythm and the olfactory senses with an aroma scent. The experiment utilized the method of EEG, which evaluates human body's psychological status via tactile means, and the method of the vibra image, which evaluates the learning abilities, HRV and human body's psychological status via non-tactile means. The subjects were selected as eight university students (four males and four females) in their 20s, the type that have high relative ${\alpha}$(8~13[Hz]) activation in occipital lobe, which brings the highest level of mind stability and concentration, who had no difficulty in physical activities. The subjects' posture and physical activity was fixed to 1met - when the subjects are seated and relaxing in a comfortable environment - and their clothes condition was standardized as 0.7clo. As a result, the sentimental and psychological stability and concentration were the highest in the multisensory stimulation of jasmine scent and change rhythm of an a=1.106 sound source. In addition, under this condition, the relative $M{\alpha}$ and relative $M{\beta}$ increased by 70.49[%] and 89.72[%], respectively; the HRT decreased by 39.09[%]; and the fatigue and tension/anxiety decreased by 36.85[%] and 15.54[%], respectively.

Comparison of meat quality, fatty acid composition and aroma volatiles of dry-aged beef from Hanwoo cows slaughtered at 60 or 80 months old

  • Utama, Dicky Tri;Kim, Yeong Jong;Jeong, Hae Seong;Kim, Juntae;Barido, Farouq Heidar;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.157-165
    • /
    • 2020
  • Objective: The objective of this study was to compare the quality of dry-aged beef from cull Hanwoo cows slaughtered at 60 or 80 months old. Methods: A total of eight cull Hanwoo carcasses with a quality grade of 3 (low-grade) were selected and divided into two age groups: 63.5±2.5 months old (n = 4) and 87.8±4.5 months old (n = 4). Whole longissimus thoracis et lumborum from the 11th rib to the last lumbar vertebrae, including the back fat, was removed from the carcass at 24 h postmortem and aged for 50 days in darkness at a temperature of 2℃±1℃, a relative humidity of 85% and an air flow of 2 m/s. The sampling was performed aseptically after 0, 20, 24, 40, and 50 days of aging. Results: Regardless of the aging period, aging increased the lightness (p<0.05), redness (p<0.05) and yellowness (p<0.05) at initial blooming (90 min after slicing) and the overall acceptance (p<0.05). No further tenderization effect was found after 20 days of aging, but aging for 50 days significantly increased the lipid oxidation (p<0.05). The generation of aroma volatiles in the roast steak from aged samples was higher (p<0.05) than that of non-aged samples. No significant effect of age at slaughter was found on the color, pH, water-holding capacity, cooking loss, shear force value, bacterial counts, volatile basic nitrogen, consumer acceptance, lipid oxidation, fatty acid composition or aroma volatiles. Conclusion: The quality of dry-aged beef obtained from cull Hanwoo cows slaughtered at either 60 or 80 months old with similar quality grade was comparable and extending dry aging for more than 40 days is not recommended considering the costs and further lipid oxidation.

Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network (심층신경망을 활용한 풍속 예측 개선 모델 개발)

  • Ku, SungKwan;Hong, SeokMin;Kim, Ki-Young;Kwon, Jaeil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.597-604
    • /
    • 2019
  • Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.

Analysis of the Influence of Street Trees on Human Thermal Sensation in Summer (여름철 인간 열환경지수에 미치는 가로수의 영향 분석)

  • Jo, Sang-man;Hyun, Cheol-ji;Park, Soo-kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.105-112
    • /
    • 2017
  • In order to analyze the effect of street trees on human thermal sensation(thermal comfort) in summer, microclimatic data were measured and analyzed at sunny and shaded locations of two deciduous broadleaf and three broadleaf evergreen species of street trees. As a result, the mean differences by species in air temperature, relative humidity and wind speed were small: $0.2{\sim}1.5^{\circ}C$, 0.9~5.3% and $0.1{\sim}0.5 ms^{-1}$, respectively, but the mean difference in the mean radiant temperature was great, $27.1^{\circ}C$. In the results of physiological equivalent temperature(PET) and universal thermal climate index(UTCI), which are human thermal sensation(thermal comfort) indexes, the shaded locations by the trees showed mean reduction rates of 21.2~31.3% in the PET compared with the sunny location, which are equivalent to 1.5~2.5 levels of thermal perception. Also, 12.7~20.0% in the UTCI was reduced by the trees' shadows, which is equivalent to 1~1.5 levels of heat stress. In addition, although the broadleaf evergreen trees had 5% greater mean reduction in PET than that of the deciduous broadleaf trees, the Zelkova serrata that belonged to the deciduous broadleaf trees showed the equivalent thermal reduction effect as the broadleaf evergreen trees because of the high density of branches and leaves. Therefore, the mean radiant temperature and the density of the crown(branches and leaves) were the main influences in thermal modification by these street trees in summer.

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF