• Title/Summary/Keyword: air heater

Search Result 485, Processing Time 0.025 seconds

Studies on Performance of CO2 Water Heater by Numerical Modeling (수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구)

  • Park, Han Vit;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

Adjustment of the Excess Air Ratio for Stabilizing the Draft System in a Large Capacity Coal Fired Power Plant (대형 석탄화력 발전소에서 통풍계통 안정화를 위한 과잉공기비 조정)

  • Park, Kun Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2018
  • In this study, I analyzed the effects on stabilizing the draft system, boiler efficiency when changing excess air ratio under 870 MW load limit operation condition in a large capacity coal fired power plant and decided optimum excess air ratio. It is positively necessary to choose adequate excess air ratio for stabilizing draft system because air pre-heater pressure drop and induced draft fan first stall margin are changing when adjusting excess air ratio. This study therefore, measured air pre-heater pressure drop, induced draft fan first stall margin, boiler efficiency, loss and has chosen adequate excess air ratio adjusting excess air ratio from 1.153 to 1.127. So it is recommended that the operation point needs to be changed to 1.127 that is not only to decrease air pre-heater pressure drop and to stabilize draft system and to secure stall margin but also to maintain boiler efficiency to equivalent level.

  • PDF

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

Investigation of Heating Performance of Kerosene Fan Heater (석유 홴 히터의 난방 능력 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 1997
  • In this paper, we investigated the heating performance and the basic characteristics required for normal combustion of kerosene fan heater. And also the iso-velocity contours and the iso-temperature contours of hot gas discharged from the exit of kerosene fan heater were analyzed. The experiment was carried out with kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of $240mm{\times}240mm{\times}1200mm$. The purpose of this paper was to obtain the basic data for new design from conventional kerosene fan heater. Consequently it was found that (i) the pressure ratio $P_2/P_1$ had a comparatively constant value of 0.844 according to the increase of the revolution of turbo fan, (ii) the primary excess air ratio had a range of $0.84{\sim}1.11$ during normal combustion, and (iii) the heating performance of kerosene fan heater had a range of $1,494{\sim}3,852kcal/hr$.

  • PDF

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

A Study on the Thermoacoustic Oscillation of an Air Column (기주의 열음향진동에 관한 연구)

  • 권영필;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 1987
  • Thermoacoustic oscillation of an air column induced by heated wires is investigated analytically and experimentally. Acoustic power generation from a single heater wire is estimated based on the result of heat transfer analysis and expressed in terms of the efficiency factor indicating the conversion efficiency from heat to acoustic energy. It is shown that the efficiency factor becomes maximum when the wire radius is the order of the coustic boundary layer thickness and the flow velocity is close to the thermal diffusion velocity. Onset condition of the column oscillation is obtained by equating the acoustic power generation at the heater to the power loss due to thermoviscous dissipation at the tube wall and the convection and radiationloss at the open ends of the tube. In estimating the acoustic power generation, the heater is treated as a stretched single wire by correcting the flow velocity to take into account the interactions between adjacent heater wires. Experiment is performed by using a spiral heater of 1mm diameter in an air column of 37mm diameter. The heat input to drive the oscillation is measured and compared with the theoretical prediction. A good agreement is found between the theory and experiment, which is regarded as a substantial verification of the present analysis.

Performance Test of Vitiated Air Heater with High Temperature and High Pressure (고온 고압 공기가열기 성능시험)

  • Lee, Jungmin;Na, Jaejeoung;Hong, Yunky;Kim, Jeongwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • This study presents the performance test results and the analyses of the vitiated air heater with high temperature and high pressure. In the performance test, four test conditions and three rake measurement conditions were implemented. In the results of the performance test, the vitiated air heater met targets of temperature and flow rate, and the performance with maximum temperature of 2000 K and maximum combustion pressure of 40 bar was confirmed. Flow rate of provided methane increased 36% more than what was calculated, and 19.6% difference was displayed between measured temperature and theoretically calculated temperature.

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Performance and Emissions Characteristics of Agricultural Generator and Air Heater using DME Fuel (DME를 이용한 농업용 온풍기와 발전기의 성능 및 배출가스 특성 연구)

  • KIM, SHIN;MIN, KYOUNIL;PARK, CHEUNKYU;LEE, HYUNCHAN;NA, BYUNGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.431-440
    • /
    • 2016
  • Electric or hydrogen energy source is expected to solve a various issues including energy security and exhaust pollution. However, it is required a lot of time and a variety of development to apply for commercialization. Therefore, it is needed to translation fuels between the future and the present. DME (Dimethyl Ether) can play a reduce exhaust emission from medium- to heavy-duty engines that are mostly used in commercial sector. It have applied to the DME fuel as a various alternative fuel including power generation in many countries. Especially, it is necessary to secure the energy of energy-poor areas that are widely distributed around the world. And Korea also has the energy-poor areas due to geographical characteristics. These areas has been covered by their own energy through some small diesel generators, diesel boiler etc. If DME fuels are supplied in new demand such as rural sector with energy poor area, DME fuel will be available in the wider sector. In this study, it investigated performance and emission characteristics of agricultural generator and air heater using DME fuel. So the existing equipment of generator and air heater was modified to apply DME fuel. And combustion characteristics and properties of exhaust gas according to the contents of the DME fuel were evaluated. DME fuel showed a potential application in agricultural generator and air heater.

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF