• 제목/요약/키워드: air drag

검색결과 259건 처리시간 0.026초

고분자물질(高分子物質) 첨가(添加)에 따른 마찰저항감소(摩擦抵抗減少)에 관한 연구(硏究) (A Study on the Drag Reduction with Polymer Additives)

  • 김재근;차경옥;최형진;김종보
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.198-207
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity, and turbulent intensity whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with the inner diameter of 24mm and the length of 1,500mm. The polymer materials used are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results showed that the drag reduction of co-polymer is higher than that of polyacrylamide. Mean liquid velocities increased as polymer was added, and turbulent intensity decreased inversely near the pipe wall.

  • PDF

사이드 페어링 장착 유무에 따른 구동 트럭에서의 공기 유동 해석 (Air Flow Analysis on Driving Truck with or without Side Pairing)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.14-20
    • /
    • 2020
  • In this study, the overall states of the airflow when a truck with or without side pairing is driven at a maximum speed of 90 km/h, regulated by domestic law, were investigated through computational fluid dynamics numerical analysis. All the tested models showed that the airflow went under the truck body; specifically, the air did not flow along the underside to the rear of the truck but through the sides of its underside. The drag with the drag coefficient at model 3 was clearly higher than those for the other two models. The results of this study could help to improve the truck performance by reducing its resistance against the air flown from it in driving itself.

Low Speed Wind Tunnel Testing to Measure Drag with Velocity Variation on a Cube Body

  • 최광환;고동균
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.96-102
    • /
    • 2008
  • For centuries now, wind tunnels have been a key element in scientific research in a number of fields. Experimenting with racecars, airplanes, weather patterns, birds, and various other areas has been made much easier because of its development. In the racing field, for example, the information gathered from this testing can mean the difference between winning and losing a race. Weather simulations can also provide valuable information regarding building stability and safety. This has become very important when designing buildings today. Valuable information concerning bird flight has also been collected based on wind tunnel testing. Wind tunnels have a variety of important uses in the world today. Wind tunnel that used here is an open loop low speed wind tunnel. The fundamental principles of this tunnel is moving the air using exhaust fan In the rear side, and placing the cube in the external balance system which used to measure the working force. This experiment is using 50mm cube of finished wood. From this experiment we can get Drag Force (FD), The Reynolds Number (Re) and The Coefficient of Brae (CD).

  • PDF

유동 제어 장치를 이용한 상용차량의 항력저감 연구 (Study on drag reduction of commercial vehicle using flow control device)

  • 김성호;김정재
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.

Pilot규모에서 계면활성제용액의 장기 마찰저항감소에 관한 연구 (Long term drag reduction experiments of surfactant solutions in a pilot-scaled system)

  • 박성룡;이상남;문승현;윤형기
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.401-409
    • /
    • 1997
  • The long term drag reduction characteristics of Habon-G solution were investigated in the KIER pilot-scaled district heating simulation system. Test runs were implemented for 30 days without interruption. Pressure drop, flow rate and power consumption of surfactant (Habon-G) solution were regularly observed and compared with those of plain water. The experimental results suggest that the surfactant can be effectively applied to the DH transmission system for considerably long period wthout significant loss of its drag reduction capability even though the concentration of the additive may gradually decrease in the first stage of the experiment because of absorption.

  • PDF

Numerical investigation of a novel device for bubble generation to reduce ship drag

  • Zhang, Jun;Yang, Shuo;Liu, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.629-643
    • /
    • 2018
  • For a sailing ship, the frictional resistance exerted on the hull of ship is due to viscous effect of the fluid flow, which is proportional to the wetted area of the hull and moving speed of ship. This resistance can be reduced through air bubble lubrication to the hull. The traditional way of introducing air to the wetted hull consumes extra energy to retain stability of air layer or bubbles. It leads to lower reduction rate of the net frictional resistance. In the present paper, a novel air bubble lubrication technique proposed by Kumagai et al. (2014), the Winged Air Induction Pipe (WAIP) device with opening hole on the upper surface of the hydrofoil is numerically investigated. This device is able to naturally introduce air to be sandwiched between the wetted hull and water. Propulsion system efficiency can be therefore increased by employing the WAIP device to reduce frictional drag. In order to maximize the device performance and explore the underlying physics, parametric study is carried out numerically. Effects of submerged depth of the hydrofoil and properties of the opening holes on the upper surface of the hydrofoil are investigated. The results show that more holes are favourable to reduce frictional drag. 62.85% can be achieved by applying 4 number of holes.

Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향 (Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface)

  • 박종수;최병대;김성준
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

랜딩기어 형상에 따른 공기 유동으로 인한 항공기 성능에 미치는 영향에 관한 연구 (A Study on the Effect Influencing on the Performance of Air Plane by the Air Flow due to Landing Gear Configuration)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.35-40
    • /
    • 2017
  • The aerodynamic performance of airplane is different according to the configuration of landing gear. As the drag becomes different according to this configuration, the flow stream of air must be smooth at taking off and landing. In this study, the configuration of landing gear was designed each in order to enhance the energy efficiency of airplane. Five models were compared in total at analysis. The magnitudes of drag and pressure became different and the air pressure of wake were changed due to the configuration. So, the air pressure due to the flow velocity and the air resistance happening at the rear can be estimated according to the configuration of landing gear. It is thought to improve the performance of airplane through the result of this study.

MEMS 기반의 차량용 휨형 유속센서의 제작 및 특성 연구 (Study on the Fabrication and Evaluation of the MEMS Based Curved Beam Air Flowmeter for the Vehicle Applications)

  • 박철민;최대근;이상훈
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.116-123
    • /
    • 2016
  • This paper presents the fabrication and evaluation of the novel drag force type air flowmeter using MEMS technologies for the vehicle applications. To obtain the air drag force, the flowmeter utilized the curved beam structure, which was realized by the difference of residual stress between the silicon oxide layer and the silicon nitride layer. The paddle structure was applied for the maximum air drag force, and the dual-beam was adapted to prevent distortion. The basic experiments were performed in the wind tunnel, and the stable outputs were obtained. The device was applied to the internal combustion engine, and the results were compared with the HI-DS output where the convection thermal flowmeter was used as the reference sensor. The results indicated that the comparable resolutions and response times were obtained under the various engine speeds.

직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측 (Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method)

  • 신소민;나경수;이주영;조기대
    • 한국항공우주학회지
    • /
    • 제42권7호
    • /
    • pp.616-621
    • /
    • 2014
  • 저궤도에서 운용되는 위성은 대기 저항에 의한 연료소모가 크며, 연료소모는 임무수명 및 발사무게에 영향을 미치게 되어 위성 형상에 따른 항력의 예측이 중요하다. 본 논문에서는 직접모사법을 이용하여 파라볼릭 안테나를 탑재한 저궤도 위성의 임무고도의 변화와 받음각에 따른 항력 및 항력 계수의 변화를 살펴보았다. 저궤도의 희박 기체의 거동을 모사하는 직접모사법의 적용성을 검증하기 위해 스타샤인(Starshine) 위성의 비행데이터를 이용하여 고도, 대기와 표면의 상호작용에 따른 항력 계수를 비교하였다. 결론적으로 계산결과로부터 저궤도 위성의 정밀한 궤도수명 계산에 적합한 항력 계수를 도출하였다.