• Title/Summary/Keyword: air density

Search Result 2,032, Processing Time 0.029 seconds

Electrochemical Analysis and SOC Estimation Techniques by Using Extended Kalman Filter of the Non-aqueous Li-air Battery (비수계 리튬에어 배터리의 전기화학적 분석 및 확장 칼만 필터를 이용한 SOC 추정기법)

  • Yoon, Chang-O;Lee, Pyeong-Yeon;Kim, Jong-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • In this work, we propose techniques for estimating the SOC of Li-air battery. First, we describe and explain the operation principle of the Li-air battery. Energy density of the Li-air battery was compared with that of the Li-ion battery. The capacity and impedance value of the fully discharged voltage is analyzed, and the OCV value for SOC estimation is measured through the electrochemical characterization of the Li-air battery. Estimation value is obtained by SOC modeling through extended Kaman filter and is compared with the measurement value from the Coulomb counting method. Moreover, the performance of SOC estimation circuit is evaluated.

A Study on the Skewed Stator Slots and Skewed Rotor Magnet Segments of BLDCM (BLDCM에서의 스쿠슬롯과 스큐자극에 대한 고찰)

  • 김광헌;심동준;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.643-655
    • /
    • 1991
  • The analysis method on air gap permeance distribution, air gap MMF distribution, air gap flux density distribution, cogging torque and BEMF about the skewed stator slots or the skewed rotor magnet segments for BLDCM, respectively, is studied as a function of the skew ratio. The proposed method describes the differences between the skewed stator slots and teh skewed rotor magnet segments for the air gap permeance distribution, air gap MMF distribution and air gap flux density distribution. The reliability of the method is also confirmed by the waveform of the cogging torque and BEMF through experiments. And the result shows that the effects on the cogging torque and BEMF due to the skewed stator slots or the skewed rotor magnet segments are the same. In case of the skewed stator slots, the effects of the variations of the winding resistance and inductance are also studied.

An Accuracy Estimation of AEP Based on Geographic Characteristics and Atmospheric Variations in Northern East Region of Jeju Island (제주 북동부 지역의 지형과 대기변수에 따른 AEP계산의 정확성에 대한 연구)

  • Ko, Jung-Woo;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2012
  • Clarify wind energy productivity depends on three factors: the wind probability density function(PDF), the turbine's power curve, and the air density. The wind PDF gives the probability that a variable will take on the wind speed value. Wind shear refers to the change in wind speed with height above ground. The wind speed tends to increase with the height above ground. also, Wind PDF refers to the change with height above ground. Wind analysts typically use the Weibull distribution to characterize the breadth of the distribution of wind speeds. The Weibull distribution has the two-parameter: the scale factor c and the shape factor k. We can use a linear least squares algorithm(or Ln-least method) and moment method to fit a Weibull distribution to measured wind speed data which data was located same site and different height. In this study, find that the scale factor is related to the average wind speed than the shape factor. and also different types of terrain are characterized by different the scale factor slop with height above ground. The gross turbine power output (before accounting for losses) was caculated the power curve whose corresponding air density is closest to the air density. and air desity was choose two way. one is the pressure of the International Standard Atmosphere up to an elevation, the other is the measured air pressure and temperature to calculate the air density. and then each power output was compared.

Reduction of Cogging Torque of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현파 공극 자속밀도 구현에 의한 코깅토오크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Kwon, Byung-Il;Lee, Chul-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.140-142
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in permanent-magnet brushless DC motors. Cogging torque can be minimized by sinusoidal air-gap flux density waveform because it is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance. Therefore, this paper will present a design method of magnetization system of bonded isotropic neodynium-iron-boron(Nd-Fe-B) magnets in ring type with sinusoidal air-gap flux density distribution and low manufacturing cost. An analytical technique of magnetization makes use of two-dimensional finite element method(2D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation.

  • PDF

Analysis and Optimization of Air-Core Permanent Magnet Linear Synchronous Motors with Overlapping Concentrated Windings for Ultra-precision Applications

  • Li, Liyi;Tang, Yongbin;Ma, Mingna;Pan, Donghua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.16-22
    • /
    • 2013
  • This paper presents the analysis and optimization of air-core permanent magnet linear synchronous motor with overlapping concentrated windings to achieve high thrust density, high thrust per copper losses and low thrust ripple. For the motor design, we adopt equivalent magnetizing current (EMC) method to analyze the magnetic field and give analytical formulae for calculation of motor parameters such as no-load back EMF, dynamic force, thrust density and thrust per copper losses. Further, we proposed a multi-objective optimization by genetic algorithm to search for the optimum parameters. The design optimization is verified by 2-D Finite Element analysis (FEA).

A Study on Optimizing Zinc-Air Batteries Using M&S (M&S를 이용한 아연-공기전지 최적화 연구)

  • Lee, Jae-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • Zinc-air batteries which has various merits in the aspect of energy density, power density and price relative to lithium based second batteries were extensively investigated recently. To develope and optimize these zinc-air batteries, the method of M&S is so efficient solution to reduce price and time. Therefore, in this paper, after executing mathematical modeling, I optimized the zinc-air battery through the simulation and make bolt-cell and discharge it to compare with simulation result. As a result, predictions are well agreed with experimental results.

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

Investigation of Urban High Temperature Phenomenon in Summer using the High Density Ground Monitoring System in Daegu Metropolitan Area (지상 고밀도 관측 시스템을 이용한 대구의 여름철 고온현상 조사)

  • Kim, Sang-Heon;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1619-1626
    • /
    • 2014
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network in Daegu metropolitan city, the representative basin-type city in Korea, in summer, 2013. We used a total of 28 air temperature observation points data(16 thermometers and 12 AWSs). From the distribution of monthly average air temperature, air temperature at the center of Daegu was higher than the suburbs. Also, the days of daily minimum air temperature more than or equal to $25^{\circ}C$ and daily maximum air temperature more than or equal to $35^{\circ}C$ at the schools near the center of Daegu was more than those at other schools. This tendency appeared more clearly on the days of daily minimum air temperature more than or equal to $25^{\circ}C$. Also, the air temperature near the center of the city was higher than that of the suburbs in the early morning. Thus it was indicated that the air temperature was hard to decrease as the bottom of the basin. From these results, the influence of urbanization to the formation of the daily minimum temperature in Daegu was indicated.

An experimental study on swirling spray flame structure by air-blast nozzle (기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구)

  • O, Sang-Heon;Baek, Min-Su;Kim, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

A Study on the Concept of Operation of Low-density Operation in Urban Air Mobility from the Perspective of an Airline (운항사 관점의 저밀도 도심항공교통 운항통제 운용개념 연구)

  • Sunghyun Jin;Heeduk Cho;Daniel Kim;Jaewoo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2024
  • This study investigates the operational facets of low-density urban air mobility (UAM) from an airline's perspective amid burgeoning concerns about urban congestion in megacities. UAM, employing electric vertical takeoff and landing (eVTOL) technology, emerges as a potential remedy to the challenges of traffic gridlock and environmental degradation. As the UAM market progresses from initial stages to maturity, tailored traffic control systems become paramount. Focused on the context of low-density environments during UAM's inception, this research scrutinizes operational frameworks, essential infrastructure, and likely scenarios. It aims to bolster the safety and efficiency of UAM operations by delving into the specifics of traffic control concepts designed for these unique settings. The study seeks to significantly contribute to optimizing UAM's initial phases, providing insights into crucial operational dynamics for a smoother integration of urban air mobility into contemporary urban landscapes.