• Title/Summary/Keyword: air data sensor

Search Result 303, Processing Time 0.025 seconds

Temperature and Concentration measurement using Semi-conductor diode laser (반도체레이져를 이용한 온도 및 농도의 계측)

  • Chung, D.H.;Noh, D.S.;Ikeda, Yuji
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.168-174
    • /
    • 2000
  • A diode laser sensor system based on absorption spectroscopy techniques has been developed to measure $CO_2$ concentration and temperature non-intrusively in high temperature combustion environments using a 2.0 ${\mu}m$ DFB(Distributed Feedback) laser. Two optics was fabricated in pig-tail fashion and all optical components were implemented in a single box. The evolution of measurement sensitivity was done using test cell by changing sweep frequency and $CO_2$ concentration. Gas temperature was determined from the ratio of integrated line strengths. Species concentration was determined from the integrated line intensity and the measured temperature. The result show that the system has 2% error in wide operation frequency range and accuracy of $CO_2$ concentration was about 3%. The system was applied to measure temperature and concentration in the combustion region of a premixed $CH_4$ +air triangular flame. The measurement results of gas temperature agreed well with thermocouple results. Many considerations were taken into account to reduce optical noise, etalon effect, beam steering and base line matching problem. The evaluations results and actual combustion measurement demonstrate the practical and applicability for in-situ and real time combustion monitoring in a practical system.

  • PDF

A Study on the International Standard for CCM Related RFID Packaging Technology (CCM(Cold Chain Management)과 연계된 RFID 패키징 국제 기술 표준의 분석)

  • Yoon, Seong-Young;Cha, Kyong-Ho;Park, Su-Il;Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2009
  • The introduction of radio frequency identification (RFID) technology into cold chain system will be essentials for the better quality preservation of chilled products in the near future. The object of this study is to analyze the trends of international standardization activity for cold chain system and RFID packaging. The standardization of RFID technology is related to SC31 of ISO/IEC JTC1. The established standard from EPCglobal includes the air interface of UHF substitute actors, the control of EPC tag data and the event collected from RFID readers, the directory services and information storage of ONS and EPCIS, and securities. Also, EPC standards include the sensor functions of the cold chain. In Korea, the RFID packaging related techniques and their engineering standard are less studied as compared with Europe or North America. For effective application of RFID in the cold chain and packaging, scientific and systematic researches on RFID, including technical standards for domestic RFID frequency, will be key elements for preoccupation of these application techniques.

  • PDF

Development of Tight-Fitting Garments with a Portable ECG Monitor to Measure Vital Signs (휴대용 심전도 기기와 직물형 전극을 이용한 생체정보 측정용 밀착 의복 개발)

  • Jeong, Yeon-Hee; Kim, Seung-Hwan;Yang, Young-Mo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.112-125
    • /
    • 2010
  • A Holter monitor is used for ECG monitoring of ambulatory daily life in hospital. However, the use of this apparatus causes skin allergies and discomfort in patients because of the attachment gel and tapes used to attach disposable electrodes to the skin. In this study, the development of tight-fitting clothing connected to a portable Holter monitor was proposed. In addition, the use of conductive fabrics as electrodes was proposed; this will enable the use of garments in u-health care for measuring ECG signals. The male subjects were university students in the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using seven Likert scales. A Likert type scale was used for the evaluation and a 7 point score indicates that it provided the best fit as a tight-fitting upper clothing. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 4 locations (the conductive fabric electrode) As results, a male basic sloper for upper clothing was developed and that pattern was manipulated to the tight fit pattern by considering the reduction rate of the percentage stretch in the fabric. The developed tight-fitting garment was superior in terms of subjective sensation and 6t. The mean pressure of the garment with reduction rates of 40% in width and of 50% in length was 8.45gf/$cm^2$. A conductive fabric electrode was developed by considering the sewing method and the developed electrode was detected well. The ECG data were recorded for 13 hr 19 min 44 sec and the artifacts in the ECG signals were recorded for 9 hr 3 min 46 sec (total time: 22 hr 23 min 23 sec). The artifacts data were obtained during heavy activities.

A Study of Threat Evaluation using Learning Bayesian Network on Air Defense (베이지안 네트워크 학습을 이용한 방공 무기 체계에서의 위협평가 기법연구)

  • Choi, Bomin;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.715-721
    • /
    • 2012
  • A threat evaluation is the technique which decides order of priority about tracks engaging with enemy by recognizing battlefield situation and making it efficient decision making. That is, in battle situation of multiple target it makes expeditious decision making and then aims at minimizing asset's damage and maximizing attack to targets. Threat value computation used in threat evaluation is calculated by sensor data which generated in battle space. Because Battle situation is unpredictable and there are various possibilities generating potential events, the damage or loss of data can make confuse decision making. Therefore, in this paper we suggest that substantial threat value calculation using learning bayesian network which makes it adapt to the varying battle situation to gain reliable results under given incomplete data and then verify this system's performance.

VR-based Hiking System that supports Real-time Field Condition (등산로 조건을 실시간으로 지원하는 VR 기반의 사이버 등산 시스템)

  • Ko, Dae-sik
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.78-86
    • /
    • 2018
  • In this paper, a VR-based cyber hiking system was designed to provide virtual reality for famous mountains that can offer the real senses and feelings of hiking in supporting environmental factors of actual mountains such as the temperature, air, sound, echoes, etc., of the mountain the user wants to climb. The VR-based cyber hiking system that reflects real-time site conditions is largely consisted of the data collection module that collects data from the live site, multiple drive modules that enables the user to feel real senses using data from the sites, and sensor module to detect the stimuli provided by the drive modules and the user's physical body transition. Unlike existing VR-based hiking systems, the proposed cyber hiking system not only provides simple virtual reality for the wanted mountain, but can also provide the natural conditions of real mountains and implement the uphill and downhill of hiking routes. In particular, it has the effect of providing fun and game elements to users by excluding unnecessary conditions and risks that may arise in actual hiking and instead supporting augmented realities such as squirrels on actual hiking paths. In addition, in providing users with the changes in their body before and after hiking, it is expected to be effective in providing diverse feedback such as the height, gradient, and speed of mountain hiking.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Development of a Greenhouse Environment Monitoring System using Low-cost Microcontroller and Open-source Software (저비용 개방형 Microcontroller를 사용한 온실 환경 측정 시스템 개발)

  • Cha, Mi-Kyung;Jeon, Youn A;Son, Jung Eek;Chung, Sun-Ok;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.860-870
    • /
    • 2016
  • Continuous monitoring of environmental parameters provides farmers with useful information, which can improve the quality and productivity of crops grown in greenhouses. The objective of this study was to develop a greenhouse environment measurement system using a low-cost microcontroller with open-source software. Greenhouse environment parameters measured were air temperature, relative humidity, and carbon dioxide ($CO_2$) concentration. The ranges of the temperature, relative humidity, and $CO_2$ concentration were -40 to $120^{\circ}C$, 0 to 100%, and 0 to 10,000 ppm, respectively. A $128{\times}64$ graphic LCD display was used for real-time monitoring of the greenhouse environments. An Arduino Uno R3 consisted of a USB interface for communicating with a computer, 6 analog inputs, and 14 digital input/output pins. A temperature/relative humidity sensor was connected to digital pins 2 and 3. A $CO_2$ sensor was connected to digital pins 12 and 13. The LCD was connected to digital pin 1 (TX). The sketches were programmed with the Arduino Software (IDE). A measurement system including the Arduino board, sensors, and accessories was developed (totaling $244). Data for the environmental parameters in a venlo-type greenhouse were obtained using this system without any problems. We expect that the low-cost microcontroller using open-source software can be used for monitoring the environments of plastic greenhouses in Korea.

A technique for Auto find the way of 3-D spatial aviation images contents environment (3차원 공간 동영상 콘텐츠 환경에서의 자동 길 찾기 기법연구)

  • Yeon, Sang-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • Recently we could generation of 3-D simulation image by use of various image contents, so I tried advanced methods very easily leads to the location on the GIS environments. Its used basically air photos and satellite sensor images for them. For the generate 3-D spatial be suitable to matching map coordinates using elevation data from digital topographic files, and matching to 3D spatial image contents through perspectives view condition composed to move according to fixed roads until arrive to location. Through this new system which tourists are able to simulate the interest paths or locations and to visit the cultural inheritance was proposed by combining various spatial data with the multimedia contents. This system provides people with guidance to locate the cultural assets in the Web environments. The developed system which is more convenient to provide tourists with the information and they are able to access automatically to location easily. In the future, the visitors are able to use easily the 3d image contents on the Internet or from the public tour information desk by using the simulation images.

  • PDF

Indoor to Outdoor Ratio of Fine Particulate Matter by Time of the Day in House According to Time-activity Patterns (시간활동양상에 따른 주택의 시간대별 실내·실외 초미세먼지 농도비)

  • Park, Jinhyeon;Kim, Eunchae;Choe, Youngtae;Ryu, Hyoensu;Kim, Sunshin;Woo, Byung Lyul;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.504-512
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the indoor to outdoor ratio (I/O ratio) of time activity patterns affecting PM2.5 concentrations in homes in Korea through a simulation. Methods: The time activity patterns of homemakers were analyzed based on the 'Time-Use Survey' data of the National Statistical Office in 2014. From September 30 to October 2, 2019, the experimenter lived in multifamily housing located in Guro-gu, Seoul. The I/O ratio of PM2.5 concentration was measured by installing sensor-based instruments. Results: The average indoor and outdoor PM2.5 concentrations during the three days were 33.1±48.9 and 45.9±25.3 ㎍/㎥, respectively. The average I/O ratio was 0.75±0.60. The indoor concentration tended to increase when PM2.5 source activity such cooking and cleaning was present and outdoor PM2.5 was supplied through ventilation. Conclusions: This study could be used as basic data for estimating indoor PM2.5 concentrations with personal activity pattern and weather conditions using outdoor concentrations.