DOI QR코드

DOI QR Code

Development of Tight-Fitting Garments with a Portable ECG Monitor to Measure Vital Signs

휴대용 심전도 기기와 직물형 전극을 이용한 생체정보 측정용 밀착 의복 개발

  • Published : 2010.01.31

Abstract

A Holter monitor is used for ECG monitoring of ambulatory daily life in hospital. However, the use of this apparatus causes skin allergies and discomfort in patients because of the attachment gel and tapes used to attach disposable electrodes to the skin. In this study, the development of tight-fitting clothing connected to a portable Holter monitor was proposed. In addition, the use of conductive fabrics as electrodes was proposed; this will enable the use of garments in u-health care for measuring ECG signals. The male subjects were university students in the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using seven Likert scales. A Likert type scale was used for the evaluation and a 7 point score indicates that it provided the best fit as a tight-fitting upper clothing. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 4 locations (the conductive fabric electrode) As results, a male basic sloper for upper clothing was developed and that pattern was manipulated to the tight fit pattern by considering the reduction rate of the percentage stretch in the fabric. The developed tight-fitting garment was superior in terms of subjective sensation and 6t. The mean pressure of the garment with reduction rates of 40% in width and of 50% in length was 8.45gf/$cm^2$. A conductive fabric electrode was developed by considering the sewing method and the developed electrode was detected well. The ECG data were recorded for 13 hr 19 min 44 sec and the artifacts in the ECG signals were recorded for 9 hr 3 min 46 sec (total time: 22 hr 23 min 23 sec). The artifacts data were obtained during heavy activities.

Keywords

References

  1. 김순분, 곽명숙, 박채현. (2004). 스트레치 소재를 사용한 현대무용 타이츠팬츠 원형 설계. 대한가정학회지, 24(4), 45-54.
  2. 김승환. (2006). u-Healthcare를 위한 생체정보 모니터링 기술. 한국통신학회 하계종합학술발표회 논문 초록집, 125-144.
  3. 김유경. (2007). 웨어러블 테크놀로지를 기반으로한 스마트 재킷디자인 연구, 한국의상디자인학회지, 9(1), 149-159.
  4. 남윤자, 이형숙. (2005). 남성복 패턴 메이킹. 서울: 교학연구사.
  5. 문희성, 조현승, 박선형, 이주현, 차기펄, 신선영, 정효일. (2007). 체성분 측정용 스마트 의류 개발의 가능성 탐색. 감성과학, 10(3), 383-391.
  6. 박진아. (2003). Stretch 소재를 사용한 여성용 Bodysuit 원형 설계에 관한 연구, 한국섬유공학회지, 40(6), 562-571.
  7. 박혜준. (2007). ECG 생체신호 측정을 위한 실용적 U-헬스 케어 의복 개발. 한국의류학회지, 31(2), 292-299. https://doi.org/10.5850/JKSCT.2007.31.2.292
  8. 백경자, 이정란. (2003). 20대 남성의 어깨부위 형태 및 길원형에 관한 연구. 한국의류학회지, 27(3/4), 429-440.
  9. 산업자원부. (2003). 미래 일상생활용 스마트 의류의 개발에 관한 산업분석. 서울: 과학기술정책연구원.
  10. 산업자원부. (2005). 제5차 한주인 인체치수조사 자료-직접 측정에 의한 인체치수 통계. 서울: 산업자원부기술표준원.
  11. 신승철, 유창용, 강재환, 남승훈, 송윤선, 임태규, 이정원, 박덕근, 김승환, 김윤태. (2004). 응급상황 감지를 위한 e-HEALTH시스템의 구현. 한국정보과학회 04 봄 학술발표 논문집, 322-324.
  12. 이계형, 박성빈, 윤형로. (2006). 전도성 직물을 이용한 단일 리드 심전도 측정 및 실시간 심전도 유도 호흡 추출 방법에 관한 연구. 전기학회논문집, 55(7), 335-343.
  13. 이현영. (2006). 생체신호 측정용 스마트 의복의 구조에 따른 착용효율성 및 주관적 착용감 평가. 한국생활과학회지, 15(6), 1037-1047.
  14. 정연희. (2006a). 3D 스캔 데이터를 활용한 밀착 패턴 원형 개발. 한국의류학회지, 30(1), 157-166.
  15. 정연희. (2006b). Size Korea 2004의 한국인 인체치수를 이용한 남성용 밀착 팬츠 패턴 개발. 한국생활과학회지, 15(5), 791-802.
  16. 정연희. (2006c). 인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발. 한국생활과학회지, 15(3), 481-490.
  17. 정연희. (2008). 신축성 원단의 축소율과 의복압에 대한 기초 연구, 한국생활과학회지, 17(5), 963-973. https://doi.org/10.5934/KJHE.2008.17.5.963
  18. 조현승, 김진형, 박선민, 유재훈, 이주현. (2006). MP3 기능 스마트 재킷의 상용화 모형 개발. 감정과학, 9(4), 377-383.
  19. 채행석, 홍지영, 김준희, 김진형, 한광희, 이주현. (2007). MP3 스마트 웨어 제품 상용화를 위한 디자인 프로토타입 개발 및 사용성 평가 연구. 감정과학, 10(3),331-342.
  20. 최미성. (2004). 사이클 선수들을 위한 투피스형 사이클복의 패턴 개발과 관한 연구. 한국의류학회지, 28(5), 637-647.
  21. 통계청. (2006). 장래안구추계. 서울: 통계청.
  22. 허동진, 나미향, 이정순, 정복히, 김정숙. (2001). 산업패턴설계-남성복 서울: 교학연구사.
  23. Connolly, M., & Buckley, D. A. (2004). Contact dermatitis from propylene glycol in ECG electrodes, complicated by medicament allergy. Contact Dermatitis, 50(1), 42-42. https://doi.org/10.1111/j.0105-1873.2004.00271c.x
  24. Coyle, S., De Rossi, D., DIamond, D., Lau, K. T., & Wallace, G. (2007). Smart nanotextiles: A review of materials and applications. MRS bulletin, 32(2), 434-442. https://doi.org/10.1557/mrs2007.67
  25. Kennedy, H. L. (2006). The history, science, and innovation of holter technology. The official journal of the International Society for Holter and Noninvasive Electrocardiology, 11(1), 85-94. https://doi.org/10.1111/j.1542-474X.2006.00067.x
  26. Linz, T., Kallmayer, C., Aschenbrenner, R., & Reichl, H. (2005). Embroidering electrical interconnects with conductive yarn for the integration of flexible electronic modules into fabric. Proceedings Ninth IEEE International Symposium on wearable computers, 86-89.
  27. Linz, T., Vieroth, R., & Dils, C. (2009). Embroidered interconnections and encapsulation for electronics in textiles for wearable electronics applications. Smart textiles, 60, 85-94.
  28. Rienzo, M., & Gnocci, F. C. (2007. 6). MagIC: A textile based wearble system for vital sign monitoring. Paper presented at the 4th International Avantex-Symposium, Frankfurt, Germany.
  29. Ziegert, B., & Keil, G. (1988). Stretch fabric interaction with action wearables: Defining a body contouring pattern system. Clothing and Textiles Research Journal, 6(4), 54-64. https://doi.org/10.1177/0887302X8800600408

Cited by

  1. An Analysis of Compression Wear Designs and Structural Elements vol.16, pp.3, 2014, https://doi.org/10.5805/SFTI.2014.16.3.421
  2. Development of Compression Wear Tops for Men in Their Forties Based on Muscle Locations vol.39, pp.2, 2015, https://doi.org/10.5850/JKSCT.2015.39.2.271
  3. Development of Tight-fitting Upper Clothing for Measuring ECG -A Focus on Weft Reduction Rate and Subjective Assessment- vol.36, pp.11, 2012, https://doi.org/10.5850/JKSCT.2012.36.11.1174
  4. A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping vol.17, pp.6, 2015, https://doi.org/10.5805/SFTI.2015.17.6.1039
  5. Domestic Research Trends in IT Fashion vol.14, pp.4, 2012, https://doi.org/10.5805/KSCI.2012.14.4.614
  6. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male vol.39, pp.9, 2015, https://doi.org/10.1007/s10916-015-0279-2
  7. A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate vol.17, pp.5, 2015, https://doi.org/10.5805/SFTI.2015.17.5.844
  8. An Analysis on the Effect of the Shape Features of the Textile Electrode on the Non-contact Type of Sensing of Cardiac Activity Based on the Magnetic-induced Conductivity Priciple vol.62, pp.6, 2013, https://doi.org/10.5370/KIEE.2013.62.6.803
  9. Efficacy research of electrocardiogram and heart rate measurement in accordance with the structure of the textile electrodes vol.17, pp.12, 2016, https://doi.org/10.1007/s12221-016-6346-6