• Title/Summary/Keyword: air breathing engine

Search Result 57, Processing Time 0.031 seconds

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Performance Characteristics of Hypersonic External Compression Inlet Using Isentropic Compression Surface (등엔트로피 압축면을 이용한 극초음속 외부 압축형 흡입구 성능 특성)

  • Kim, Young Jin;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.297-308
    • /
    • 2022
  • Most air-breathing aircraft operated in the hypersonic region are equipped with a scramjet engine. In a scramjet engine, a shock wave generated at an inlet acts as a compressor for a general gas turbine engine instead, so total pressure loss caused by the shock wave is considered very important. In this study, to minimize total pressure loss, a method of designing an external compression inlet using isentropic compression surface was proposed, and an external compression inlet with 3-deflection angles and Busemann inlet were designed under the same conditions. After that, through computational analysis, the performance characteristics at off-design conditions were compared. Each inlet shape was truncated according to the length of the 3-ramp external compression inlet, and the boundary layer correction was performed. The isentropic external compression inlet showed superior performance at the design point, but under the off-design conditions, its performance was degraded compared to the 3-ramp external compression inlet.

Research Activities of Transpiration Cooling for High-Performance Flight Engines (고성능 비행체 엔진을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.966-978
    • /
    • 2011
  • Transpiration cooling is the most effective cooling technique for the high-performance liquid rockets and air-breathing engines operating in aggressive environments with higher pressures and temperatures. When applying transpiration cooling, combustor liners and turbine blades/vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. Practical implementation of the cooling technique has been hampered by the limitations of available porous materials. But advances in metal-joining techniques have led to the development of multi-laminate porous structures such as Lamilloy$^{(R)}$ fabricated from several diffusion-bonded, etched metal thin sheets. And also with the availability of lightweight, ceramic matrix composites(CMC), transpiration cooling now seems to be a promising technique for high-performance engine cooling. This paper reviews recent research activities of transpiration cooling and its applications to gas turbines, liquid rockets, and the engines for hypersonic vehicles.

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

Numerical Study of CH4/LOx Combustion of Shear-coaxial Injector in High Pressure Combustion Chamber of Liquid Rocket (액체로켓 동축인젝터(CH4/LOx)의 고압 연소실 내 연소 유동장에 대한 수치적 연구)

  • Kim, Jung Eun;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.311-313
    • /
    • 2014
  • High pressure combustion with multiphase--liquid, gas, and supercritical phase--mixtures are widely used technology in the high efficiency liquid propellent rocket engine. This is the typical characteristics differentiate from the combustor of conventional air-breathing engines. Therefore, successful research of high pressure combustion at supercritical condition is essential to develope a high efficiency liquid rocket engine. Numerical studies have been carried out to explore capabilities of numerical method for LOx-CH4 non-premixed flames at high pressure. In this paper, corresponding numerical results are presented and compared with experimental result of MASCOTTE facility.

  • PDF

Technical Review and Analysis of Ramjet/Scramjet Technology II. Scramjet and Combined Cycle Engine (램제트/스크램제트의 기술동향과 기술분석 II. 스크램제트 및 복합엔진)

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • A technical analysis of current scramjet and combined-cycle engine is presented. Substantial research has been pursued to characterize the operation mechanism of scramjet propulsion, especially in the areas of flame stabilization and system integration, dramatically over the years in support of both military and space access application. Major technology that had significant impact on the maturation of scramjet propulsion technology are dual combustion ramjet, dual mode ramjet, and combined cycle engine to cover a typical wide rage of flight, up to flight Mach number 10. Notable are the fundamental and practical techniques, for instance, scram propulsion itself, thermal relaxation and protection using endothermic fuel and/or CSiC composit materials, and design/manufacture of movable intake and nozzle, to realize high speed propulsion system in near future.

Development Study on Variable Nozzle For Hypersonic Air Breathing Engine

  • Kojima, Takayuki;Taguchi, Hideyuki;Kobayashi, Hiroaki;Fukiba, Katsuyoshi;Sato, Tetsuya;Hatta, Hiroshi;Goto, Ken;Koyanagi, Jun;Aoki, Takuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.492-498
    • /
    • 2008
  • In this paper are described recent studies about variable nozzles, that are a rectangular type nozzle and an axisymmetric type nozzle, of the precooled turbojet engine(S-engine) which are developed for the demonstration of the key technologies for the propulsion system of the hypersonic airplane and the first stage propulsion of the TSTO space plane. For the rectangular nozzle, three types of C-shaped carbon/carbon composite cowls which includes subscale model of the precooled turbojet engine are fabricated and the fine attachment to the ramp is confirmed. For the firing of the S-engine, stainless steel cowl with concrete heat insulator are fabricated and tested for 20 sec. Axisymmetric variable plug nozzle which is made of C/C material is fabricated and pressurized by the cold flow test. The axisymmetric plug nozzle can be operative up to 0.57 MPa of nozzle inlet pressure.

  • PDF

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

Changes in Circulatory and Respiratory Activities Observed on Men in an Engine Room of a Navy Ship (함정 기관실내 활동의 순환 및 호흡 기능에 대한 영향)

  • Hyun, Kwang-Chul;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.199-213
    • /
    • 1967
  • Circulatory and respiratory activities were observed in men exposed to the environment of engine room of a cruising Republic of Korea Navy ship and compared to the control values obtained in an ordinary laboratory room on land. The environment of an engine room of cruising navy ship was presumed to be a multiple stress acting on men. The environment of the engine room included high temperature $(35-42^{\circ}C)$, low relative humidity (20-38% saturation), vibration (about 7 cycles per second), rolling and pitching of ship and noises. Sixteen men were divided into two groups consisted of each 8 subjects. Subjects of sea duty group had experience of continuous on board duty averaging 3.5 years. Men of land duty group had no experience of on board activity. On land observations were made on one day prior to the boarding and leaving the port and four days after landing. In between observations in the engine room were made on the first, 5 th, 9 th, 12 th, and 14 th day of on board activity. The whole experimental period lasted for 20 days. Measurements on circulatory and respiratory parameters were at standing resting state (after 30 minutes standing in the case of on land study and 15 minutes in engine room study) and within one minute after cessation of on the spot running of which rhythm was 30/min. and lasted for 5 minutes. Oxygen consumption and pulmonary function test were done in the period of two minutes from the 3rd to 5th minutes of running. The following results were obtained. 1. Body temperature showed no change regardless of group difference or on land or on board measurements. 2. Pulse rate increased markedly after boarding the ship id both groups. Pulse rate increased from the first day on board at rest and after exercise as compared to the on land control value. This increase in pulse rate was more marked after exercise. Sea duty group showed less increase in pulse rate at rest than the land duty group. Standing and resting pulse rate of sea duty group on lam was 81 and increased to 87 at the 5th day on board and remained smaller than the land duty group throughout the period on board. Control standing and resting pulse rate of land duty group on land was 76 and reached 89 at the 9th day on board and thereafter decreased a little. Pulse rate of land duty group at rest on board remained greater than that of sea duty group throughout the period on board. 3. Systolic blood pressure of sea duty group increased after boarding the ship and remained higher than the control value on land. In the land duty group, however, systolic blood pressure decreased during the period on board the ship. Diastolic blood pressure decreased in both groups. 4. Resting breathing rate of land duty group increased and remained higher than the control value on land. In sea duty group, however, resting breathing rate showed a transient increase on the 1st day on board and decreased thereafter to the control value on land and kept the same level throughout the period of cruise. Absolute value of breathing rate in the sea duty group was greater than the land duty group both at rest and after exercise. 5. There was a lowering of breathing efficiency in both groups. Thus, increases in tidal volume and minute ventilation volume and decreases in maximum breathing capacity, vital capacity, capacity ratio and air velocity Index were observed after boarding the ship. An increase in ventilation equivalent was also observed in both groups. The lowering of breathing efficiency was more marked in the land duty group than the sea duty group. 6. Energy expediture increased in both groups during their stay on the ship and was more marked in the sea duty group. 7, Lactate concentration in venous blood at rest and after exercise increased after boarding the ship and no group difference was observed.

  • PDF

An Experimental Study on Thrust measurement Method of Supersonic Wind Tunnel from Pressure Measurement (압력 측정을 이용한 초음속 풍동의 추력 측정 방법에 대한 실험적 연구)

  • huh Hwanil;Kim Hyungmin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.253-254
    • /
    • 2002
  • The determination of thrust is very important in hypersonic air-breathing propulsion design and evaluation. Because of the short flow-residence time in the combustor, the evaluation of engine performance is strongly influenced upon the engine thrust. Conventional methods to determine the thrust is using thrust stand or force measurement system. However, these methods cannot be applied to the case where thrust stands are impractical, such as free jet testing of engines, and model combustor. With this reason, the thrust determination method from measured pilot pressure is considered and evaluated.

  • PDF