• Title/Summary/Keyword: air bearing

Search Result 573, Processing Time 0.024 seconds

Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables (정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가)

  • Kim, Ock-Hyun;Lee, Kyu-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

Static and Dynamic Characteristics of Magnetically Preloaded Air Bearing Stage for a 3-Axis Micro-Machine Tool (3축 마이크로 공작기계용 자기예압 공기베어링 스테이지의 정, 동적 특성)

  • Ro Seung-Kook;Ehmann Kornel F.;Yoon Hyung-Suk;Park Jong-Kweon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.468-472
    • /
    • 2005
  • In this paper, the static and dynamic stiffness of the air bearing stage for micro-micro machine tool are examined experimentally. For stiffness and precision concerns, air bearing stages are adapted for 3-axis micro-milling machine which is size of $200x200\;mm^2$. The air bearings in the stage are preloaded by permanent magnets to achieve desired bearing clearance and stiffness for vertical direction. As the stiffness of the air bearing is primary interests, static stiffness test were performed on XY stage in Z direction and Z column in Y direction. Dynamic test were performed on XY stage and Z column, respectively. Both static and dynamic tests were performed in different air pressure conditions. The vertical stiffness of XY stage is about 9 N/ pm where Y stiffness of Z column is much smaller as $1\;N/{\mu}m$ because of the large moment generated by Y force on the column.

  • PDF

The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD (에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구)

  • Baek, GeonWoong;Joo, Won-Gu;Mun, Hyeong Wook;Hwang, Sunghyen;Jeong, Sung-Yun;Park, Jung-Koo
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

Dynamic Characteristics Analysis of the Carriage Structure Supported by Air Bearing (공기베어링으로 지지된 캐리지 구조물의 동특성 해석)

  • 정순철;김덕수;유충준;장승환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1059-1065
    • /
    • 2004
  • In this paper, the dynamic characteristic analysis of carriage structure supported by air bearings were performed. Toward this end, the characteristics of air bearing were numerically analyzed to estimate the stiffness of the air bearing and the clearance between air bearing and guide surface. The modal analysis of the carriage structure was performed by using finite element method, and the experimental modal analysis was also performed to validate the finite element model, where rigid body modes were compared to validate the stiffness of the air bearings. From the results, the air spring stiffness can be estimated within the range of acceptable accuracy under any pressure and clearance condition.

Dynamic Characteristics Analysis of the Carriage Structure Supported by Air Bearing (에어베어링으로 지지된 캐리지 구조물의 동특성 해석)

  • 정순철;김덕수;유충준;장승환;이재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1107-1114
    • /
    • 2003
  • In this thesis, the dynamic characteristic analysis of carriage structure supported by air bearings were peformed. Toward this end, the characteristics of air bearing were numerically analyzed to estimate the stiffness of the air bearing and the clearance between air bearing and guide surface. The modal analysis of the carriage structure was peformed by using finite element method, and the experimental modal analysis was also performed to validate the finite element model, where rigid body modes were compared to validate the stiffness of the air bearings. From the results, the air spring stiffness can be estimated within the range of acceptable accuracy under any pressure and clearance condition.

  • PDF

A Study on the Characteristics of the Oil-free Turbocharger for Diesel Engine Vehicles (디젤 엔진 차량의 무급유 터보차져의 성능 평가에 관한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Yong-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • Turbocharger has a main purpose on recycling of the exhaust gas from the engine cylinder. On the basis of the facility characteristics, the turbocharger supported on floating ring bearings has some problems such as the large volume, oil supplement for lubrication and high power loss due to high operating torque. The air foil bearing has been studied as the bearing element to be able to alternate the floating ring bearing without the problems of the floating ring bearing. In this study, the air foil bearing has 2 parts; journal and thrust bearings, and the test facility consists of the engine, exhaust and intake parts. In addiction, the specification of the turbocharger follows a small turbocharger for SUV engine. The engine speed is varied from 750 (idle rpm) to 2,500 rpm and then, the rotating speed of the turbocharger rotor is accelerated from 0 to 100,000 rpm. From those experiments, the comparison between the performances of the air foil bearing and floating ring bearing is conducted and the results show that the air foil bearing has less power loss, maximum 770 watt, than the floating ring bearing, maximum 5,110 watt. This result verifies that the air foil bearing is more efficient and able to output more power under the same condition of the input power.

Disk Vibration Suppression with Air Bearing Concept (공기 베어링 개념을 이용한 디스크 진동 저감 연구)

  • 최의곤;임윤철
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2004
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue in order to reduce the track mis-registration. In this work, we propose a simple inclined air bearing (20${\times}$20 mm) system which is located very near to the rotating poly-carbonate disk, and investigate suppressing effect for the disk vibration mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of air bearing and then apply those values to the disk vibration analysis. Numerical results show about 10 percent difference comparing to the experimental results. Also we investigate the reduction of disk vibration and power consumption with two different kinds of inclined bearing for the normal disk drive system experimentally. We find inclined air bearing can reduce about 30 percents of the transverse disk vibration.

Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures (다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석)

  • 최우천;신용호;최정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

Study on air pocket design of thrust bearing for high-stiffness air spindle (공기 주축 고강성화를 위한 스러스트 베어링의 에어포켓 설계에 관한 연구)

  • Han, Young-Chil;Lee, Chae-Moon;Lee, Deug-Woo;An, Dae-Geun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.998-1002
    • /
    • 2003
  • This paper investigates the characteristics of stiffness and load in the thrust bearing of spindle which could be changeable according to the groove shape of inlet, in order to design a high-stiffness air bearing by selecting a optimal groove shape. In experiments, dead weight and displacement sensor are used to measure the load carrying capacity and the stiffness respectively. Various shapes and different depth of groove of self-restrictor are used as experimental conditions. Comparative study between the theoretical value and the practical one by measuring the value of stiffness and load of the thrust bearing is performed.

  • PDF

Analysis of the Effects of Out-of-Sphericity in Spiral Grooved Hemispherical Air dynamic Bearings (나선 홈을 가진 반구형 공기 동압베어링에서 진구도 오차의 영향 해석)

  • Choe, U-Cheon;Sin, Yong-Ho;Choe, Jeong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.145-150
    • /
    • 2000
  • Out-of-sphericity is degree of deformation of an air bearing sphere deviated from a perfect sphere. This paper investigates numerically the effect of out-of-sphericity error on the radial stiffness of an air bearing Three types of out-of-sphericity modes are considered. in this study the stiffness is calculated from pressure distribution at the bearing surface which is obtained by solving th Reynolds equation. in some cases large out-of-sphericity errors are found to improve the stiffnesses of air bearings. This implies that an air bearing of perfect hemispheres is not necessarily of the best performance. Thus much labor and cost in manufacturing air bearings can be saved, In addition the radial stiffness of an air bearing depends greatly on the application direction.

  • PDF