To develop anode-supported tubular cell with proper porosity, we have investigated the anode substrate and t the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the carbon COntent increased, the porosity of the anode substrate increased slightly and the carbon c content with proper porosity is found to be 30 vol.%. The anode-supported tube was fabricated by extrusion process a and the electrolyte layer was coated on the anode tube by slurry coating process. The anode-supported tube was cofired successfully at $^1400{\circ}C$ in air. The porosity of the anode tube was 35%. From the gas permeation test, the anode t tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense.
The electrochemical performance for the corrosion of zinc anodes according to particle size and shape as anode in Zn/air batteries was study. We prepared five samples of Zn powder with different particle size and morphology. For analysis the particle size of theme, we measured particle size analysis (PSA). As the result, sample (e) had smaller particle size with $10.334{\mu}m$ than others. For measuring the electrochemical performance of them, we measured the cyclic voltammetry and linear polarization in three electrode system (half-cell). For measuring the morphology change of them before and after cyclic voltammetry, we measured Field Emission Scanning Electron Microscope (FE-SEM). From the cyclic voltammetry, as the zinc powder had small size, we knew that it had large diffusion coefficient. From the linear polarization, as the zinc powder had small size, it was a good state with high polarization resistance as anode in Zn/air batteries. From the SEM images, the particle size had increased due to the dendrite formation after cyclic voltammetry. Therefore, the sample (e) with small size would have the best electrochemical performance between these samples.
An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.
The objective of this study is to select fuel/air feeders for reliable operation of BOP(Balance of Plant) system for a DMFC (direct methanol fuel cell). A 42-cell 50W DMFC stack is considered for performance comparison of selected fuel pumps and air blowers. The present stack has two serpentine anode channels with depth of 1.2 mm and rib of 1 mm and one serpentine cathode channel with depth of 1.5 mm and rib of 1 mm. The pressure drop through the stack is estimated in advance by utilizing the pre-existing loss coefficients data for various flow configurations. Then the operating points of feeders are determined at the balance point of the flow impedance curves for the channels in the DMFC stack and the selected pump and blower performance curves. After estimating the operating flow rates in the anode and cathode channels, the flow measurement with the selected feeders is performed for the comparison with the estimated flow rates. The measured results show that the discrepancy between the estimation and the measurement for the cathode is about 26%, about 3% for the anode
Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.
Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
Applied Chemistry for Engineering
/
v.23
no.4
/
pp.359-366
/
2012
Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.24
no.1
/
pp.49-55
/
2015
This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.
Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.
The different weight ratios of Pd to Pt, i.e., 16:4, 10:10, 4:16 in Pd-Pt/C and Pd (20 wt. %) /C electrocatalysts with low metal loading were synthesized for glycerol electrooxidation in an air breathing microfluidic fuel cell (MFC). The cell performance on Pd-Pt (16:4)/C anode electrocatalyst was found best among all the electrocatalysts tested. The single cell when tested at a temperature of 35℃ using Pd-Pt (16:4)/C, showed maximum open circuit voltage (OCV) of 0.70 V and maximum power density of 2.77 mW/㎠ at a current density of 7.71 mA/㎠. The power density increased 1.45 times when cell temperature was raised from 35℃ to 75℃. The maximum OCV of 0.78 V and the maximum power density of 4.03 mW/㎠ at a current density of 10.47 mA/㎠ were observed at the temperature of 75℃. The results of CV substantiate the single cell performance for various operating parameters.
The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.