DOI QR코드

DOI QR Code

Corrosion Properties of Al-(Ga, Sn, Mn) Alloy Anodes for an Al-air Battery in 4 M KOH Aqueous and Ethanol Solutions

4 M KOH 수용액 및 에탄올 용액에서 알루미늄 공기 전지용 Al-(Ga, Sn, Mn) 합금 음극의 부식 특성

  • Lee, Han-Ok (Department of Metallurgy and Materials Engineering) ;
  • Park, Chan-Jin (Department of Materials Science and Engineering, Chonnam National University) ;
  • Jang, HeeJin (Department of Metallurgy and Materials Engineering)
  • 이한옥 (조선대학교 금속재료공학과) ;
  • 박찬진 (전남대학교 신소재공학부) ;
  • 장희진 (조선대학교 금속재료공학과)
  • Received : 2011.03.31
  • Accepted : 2011.04.26
  • Published : 2011.04.01

Abstract

Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.

Keywords

References

  1. R. C. Herdman, Advanced Automotive Technology, OTA-ETI-638 (1995).
  2. D. Linden and T. B. Reddy, Handbook of Batteries, MacGraw-Hill (2001).
  3. E. L. Littauer and J. F. Cooper, Handbook of batteries and fuel cells(ed.D.Linden), London, McGraw-Hill, 30 (1984).
  4. M. C. H. Mckubre and D. D. Macdonald, J. Electrochem. Soc., 128, 524 (1981). https://doi.org/10.1149/1.2127450
  5. S. Yang and H. Knickle, J. Power Sources, 112, 162 (2000).
  6. Eun-Gi Shim, Ph. D. Thesis, Kyung-nam University (2000).
  7. http://www.metalprices.com
  8. A. Parrish, Fuel Cell Today, 13 Mar (2002).
  9. A. R. Despic, D. M. Drazic, M. M. Purenovic, and N. Cikovic, J. Appl. Electrochem., 6, 527 (1976). https://doi.org/10.1007/BF00614541
  10. T. Valand and G. Nilsson, Corros. Sci., 17, 931 (1977). https://doi.org/10.1016/0010-938X(77)90100-7
  11. A. Mance, D. Cerovic, and A. Mihajlovic, J. Appl. Electrochem., 14, 459 (1984). https://doi.org/10.1007/BF00610810
  12. D. D. Macdonald, K. H. Lee, A. Moccari, and D. Harrington, Corrosion, 44, 652 (1988). https://doi.org/10.5006/1.3584979
  13. D. D. Macdonald, S. Real, and M. Urquidei-Macdonald, J. Electrochem. Soc., 135, 2397 (1988). https://doi.org/10.1149/1.2095347
  14. E. J. Albert, M. A. Kulandainathan, M. Ganesan, and V. Kapali, J. Appl. Electrochem., 19, 547 (1989). https://doi.org/10.1007/BF01022112
  15. H. B. Shao, J. M. Wang, X. Y. Wang, J. Q. Zhang, and C. N. Cao, Electrochem. Commun., 6, 6 (2004). https://doi.org/10.1016/j.elecom.2003.10.007
  16. Yun-il Cho, HeeJin Jang, and Chan-Jin Park, Proceedings of the KECS spring meeting, p. 30, Jeju ICC (2010).