DOI QR코드

DOI QR Code

The Effects of Interlayer on the DLC Coating

중간층이 DLC 코팅에 미치는 영향

  • 송진수 (중소기업진흥공단 컨설팅사업처) ;
  • 남태운 (한양대학교 금속재료공학과)
  • Received : 2011.02.25
  • Accepted : 2011.03.31
  • Published : 2011.04.01

Abstract

DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. The properties of interlayer between the substrate and the DLC film were studied. Arc ion plating method have been employed to deposit onto substrate and sputtering method was used for synthesizing DLC onto interlayer. Among these six types of interlayer, deposited DLC film onto TiCN showed excellent value for characteristics. From the results of analysis for physical properties of DLC films, it seems that the adhesion forces were more important factors than intrinsic mechanical properties such as hardness, roughness and wear resistance of DLC films. AFM(Atomic Force Microscope) was used for understanding roughness of DLC films. Hardnesses of the coating layers were identified by nano-indentation method and adhesions were checked by scratch method.

Keywords

References

  1. W. K. Halnan and D. Lee, Coating for High Temperature Applications, Applied Science Publishers, London, 25 (1983).
  2. J. Robertson, Surf. Coatings Technol., 50, 185 (1992). https://doi.org/10.1016/0257-8972(92)90001-Q
  3. J. Robertson, Adv. Phys., 35, 317 (1986). https://doi.org/10.1080/00018738600101911
  4. P. Koidl, C. Wagner, B. Dischler, J. Wagner, and M. Ramsteiner, Master. Sci. Forum, 52, 41 (1990).
  5. H. Tsai and D. B. Bogy, J. Vac. Sci. Technol. A, 5, 3287 (1987). https://doi.org/10.1116/1.574188
  6. D. R. McKenzie, Rep. Prog.. Phys., 59, 1611 (1996). https://doi.org/10.1088/0034-4885/59/12/002
  7. Y. Lifshitz, Diamond Rel. Master., 5, 388 (1996). https://doi.org/10.1016/0925-9635(95)00445-9
  8. Y. Lifshitz, Diamond Rel. Master., 8, 1659 (1999). https://doi.org/10.1016/S0925-9635(99)00087-4
  9. A. A. Voevodin and M. S. Donley, Surf. Coatings Technol., 82, 199 (1996). https://doi.org/10.1016/0257-8972(95)02734-3
  10. S. R. P. Silva, J. D. Carey, R. U. A. Khan, E. G. Gerstner, J. V. Anguita, Handbook of Thin Film Materials, ed. H. S. Nalwa, Academic Press, New York, 2002.
  11. J. C. Andus and C. C. Hayman, Science, 241, 913 (1988). https://doi.org/10.1126/science.241.4868.913
  12. S. Aigenberg and R. Chabot, J. Appl. Phys., 42, 2953 (1971). https://doi.org/10.1063/1.1660654
  13. L. Karson, L. Hultman, and J. E. Sundgren, Thin Solid Films, 371, 167 (2000). https://doi.org/10.1016/S0040-6090(00)00996-2
  14. W. Fang and C. Y. Lo, Sensors and Actuators, 84, 310 (2000). https://doi.org/10.1016/S0924-4247(00)00311-3
  15. E. Uhlmann and K. Klein, Surf. Coatings Technol., 131, 448 (2000). https://doi.org/10.1016/S0257-8972(00)00837-9
  16. E. Harry, M. Ignat, Y. Pauleau, A. Rouz, and P. Juliet, Surf. Coat. Technol., 125, 185 (2000). https://doi.org/10.1016/S0257-8972(99)00542-3
  17. J. Robertson, Mater. Sci. Eng., R37, 129 (2002).
  18. Youngsook Jeon, Won Seok Choi, and Byungyou Hong. J. Korea Institute and Electronic Material Engineers., 19, 631 (2006). https://doi.org/10.4313/JKEM.2006.19.7.631
  19. M. M. Morshed, B. P. McNamara, D. C. Cameron, and M. S. J. Hashmi, J. Mater. Process. Tech., 141, 127 (2003). https://doi.org/10.1016/S0924-0136(03)00246-2