• Title/Summary/Keyword: air and water temperatures

Search Result 404, Processing Time 0.029 seconds

Catalytic combustion of $H_2$/Air mixture using Pt/$Al_2O_3$ coated nickel foam (Pt/$Al_2O_3$가 코팅된 니켈폼을 이용한 수소-공기 예혼합 기체의 촉매 연소)

  • Jin, Jung-Kun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.37-44
    • /
    • 2007
  • A nickel foam, one of metal foams was seleced as a catalyst support instead of conventional ceramic materials. $Al_2O_3$ was coated on the surface of nickel foam to increase the surface area. $Al_2O_3$ coating process was based on sol-gel process. SEM image was obtained and $Al_2O_3$ coverage was confirmed. Combustion experiments were carried out using SUS combustor and $H_2$/air mixture. Temperatures were measured with different equivalence ratios and $H_2$ flow rates. $H_2$ conversion rates were calculated by the analysis of product gas using gas chromatography. Catalytic combustion of $H_2$ was complete and stable with Pt/$Al_2O_3$ coated nickel foam and influences of water vapor were confirmed during the beginning of combustion.

  • PDF

The Universality of the Pseudo Wet Bulb Temperature During the Second Falling Rate Period (第二減速 乾燥期에 있어서의 假濕球溫度의 普偏性)

  • Park, Sung-Shin
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.106-116
    • /
    • 1972
  • The universality of the pseudo wet bulb temperature has been established in the drying of macroporous inerts, microporous inerts, and microporous swellable materials using water and methyl alcohol as the liquids. The pseudo wet bulb temperature is a new constant temperature intermediate between the wet bulb and dry bulb temperatures of the air during the second falling rate period. This temperature is calculated from consideration of the heat transfer to, and vapor diffusion from, liquid evaporating at the liquid-air boundary. The experimental results agree with that calculated from the equation proposed by Nissan, Bolles and George.

  • PDF

The effect of forced convection on boiling heat transfer from a horizontal tube (수평 원관의 비등 열전달에서 강제대류의 영향)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.558-568
    • /
    • 1998
  • This paper presents the results of experiments involving external forced convection on boiling heat transfer from electrically heated horizontal tube to water in cross flow. In these experiments, all of the following primary variables were varied: heat flux, cross flow velocity, pressure and degree of subcooling. Local surface temperatures were measured at nine peripheral positions. Surface temperature distributions are classified into four groups as a function of heat flux. The characteristics of the boiling curve at different velocity, degree of subcooling and pressure are examined.

  • PDF

Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea) (東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因)

  • Kang, Yong Q
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.163-171
    • /
    • 1984
  • The atmospheric and oceanic influences on the air-sea thermal interaction in the East Sea (Japan Sea) are studied by means of an analytic model which is based on the heat budget of the ocean. By means of the model, the model, the annual variations of heat fluxes and air temperatures in the East Sea are analytically simulated. The model shows that the back radiation, the latent heat and the sensible heat increase with the warn water advection. The latent heat increases with the sea surface temperature (SST) but the back radiation and the sensible heat dcrease as the SST increases. In the East Sea, an increase of mean SST by 1.0$^{\circ}C$ yields an increase of mean air temperature by 1.2$^{\circ}C$. The heat storage in the ocean plays an important role in the annual variations of heat flux across the sea surface.

  • PDF

An Implementation for Near-Optimal Set Point Control for Central Cooling Systems (중앙냉방시스템의 준최적 설정점제어기법 구현에 관한 연구)

  • Baek, Seung-Jae;Song, Jae-Yeob;Ahn, Byung-Cheon;Joo, Yong-Duk;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.46-51
    • /
    • 2007
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air temperature and chilled water temperature. This study has been done by using LapVIEW program with PID control in order to analyze the central cooling system energy saving.

  • PDF

Site - Specific Frost Warning Based on Topoclimatic Estimation of Daily Minimum Temperature (지형기후모형에 근거한 서리경보시스템 구축)

  • Chung Uran;Seo Hee Cheol;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.164-169
    • /
    • 2004
  • A spatial interpolation scheme incorporating local geographic potential for cold air accumulation (TOPSIM) was used to test the feasibility of operational frost warning in Chatancheon basin in Yeoncheon County, where the introduction of new crops including temperate zone fruits is planned. Air temperature from April to June 2003 was measured at one-minute intervals at four locations within the basin. Cold-air accumulation potentials (CAP) at 4 sites were calculated for 3 different catchment scales: a rectangular area of 65 x 55 km which covers the whole county, the KOWACO (Korea Water Corporation) hydrologic unit which includes all 4 sites, and the sub-basins delineated by a stream network analysis of the digital elevation model. Daily minimum temperatures at 4 sites were calculated by interpolating the perfect prognosis (i.e., synoptic observations at KMA Dongducheon station) based on TOPSIM with 3 different CAPs. Mean error, mean absolute error, and root mean square error were calculated for 45 days with no precipitation to test the model performance. For the 3 flat locations, little difference was detected in model performance among 3 catchment areas, but the best performance was found with the CAPs calculated for sub-basins at one site (Oksan) on complex terrain. When TOPSIM loaded with sub-basin CAPs was applied to Oksan to predict frost events during the fruit flowering period in 2004, the goodness of fit was sufficient for making an operational frost warning system for mountainous areas.

Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir (기후변화가 주암호 수온성층구조에 미치는 영향 예측)

  • Yoon, Sung Wan;Park, Gwan Yeong;Chung, Se Woong;Kang, Boo Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.491-502
    • /
    • 2014
  • As meteorology is the driving force for lake thermodynamics and mixing processes, the effects of climate change on the physical limnology and associated ecosystem are emerging issues. The potential impacts of climate change on the physical features of a reservoir include the heat budget and thermodynamic balance across the air-water interface, formation and stability of the thermal stratification, and the timing of turn over. In addition, the changed physical processes may result in alteration of materials and energy flow because the biogeochemical processes of a stratified waterbody is strongly associated with the thermal stability. In this study, a novel modeling framework that consists of an artificial neural network (ANN), a watershed model (SWAT), a reservoir operation model(HEC-ResSim) and a hydrodynamic and water quality model (CE-QUAL-W2) is developed for projecting the effects of climate change on the reservoir water temperature and thermal stability. The results showed that increasing air temperature will cause higher epilimnion temperatures, earlier and more persistent thermal stratification, and increased thermal stability in the future. The Schmidt stability index used to evaluate the stratification strength showed tendency to increase, implying that the climate change may have considerable impacts on the water quality and ecosystem through changing the vertical mixing characteristics of the reservoir.

Drying Characteristics of Mango Powder according to Foam-Mat Drying Conditions (포말건조 조건에 따른 애플망고 분말의 건조 가공 특성)

  • Hyeonbin Oh;Chae-wan Baek;Taeho Kwak;Hyun-Wook Jang;Ha-Yun Kim;Yong Sik Cho
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.496-505
    • /
    • 2023
  • This study explored a method to enhance the drying process usability of local mangoes by producing foam-mat dried powder under varying drying temperatures (50, 60, 70℃) and foam thicknesses (3, 6, 9 mm). The drying process period ranged from 60 to 390 minutes based on the set conditions, with higher temperatures and thinner foams accelerating drying. Powder chromaticity (L*,(L*, a*, and b*) demonstrated a declining trend with increasing drying temperature and foam thickness, exhibiting notable variance in chroma values. The water absorption index varied significantly, between 3.08 to 4.24, under different drying conditions, although the water solubility index remained consistent across foam-dried samples. Powder moisture content ranged from 2.53% to 3.83%, with hygroscopicity escalating with temperature and foam thickness. Vitamin C structure was compromised during the hot air drying process, especially at temperatures above 60℃. Electronic nose analysis distinguished foam-dried powder from freeze-dried powder; however, a thicker foam yielded a scent profile closer to that of freeze-dried powder. The findings provide fundamental data on mango foam drying, which is expected to improve processing and storage tech for local mangoes.

A Study on the Measurement of SOx-Dew Point (About the Corosin of Briquet -Burning Hot Water Boiler) ($SO_x^-$ 노점 측정에 관한 연구 (연탄 온수보일러의 부식문제에 관하여))

  • Chae Jae-Ou;Yong Gee-Joong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.4
    • /
    • pp.252-263
    • /
    • 1983
  • In the briquet-burning hot water boiler the $SO_x$-dew point is calculated and found to be between $130^{\circ}C\;and\;154^{\circ}C$. The corrosion rate depends on the surface temperature and the concentration of the condensate on the surface. The concentration of the condensate is decided acoording to the difference detween $SO_x$-dew point and the surface temperature. When the surface temperature is $80^[\circ}C$, the concentration of the condensate is also high (0.15N). Therefore the high concentration and high temperature promote the high corrosion rate of $14{\times}13^{-3}g/100cm^2{\cdot}hr$ on the SS41 material. On the other hand, when the surface temperatures are $60^{\circ}C\;and\;40^{\circ}C$, the concentrations and the co..sion rates are reduced dramatically to $0.11\;N,\;8.6{\tiems}10^{-3}g/100cm^2{\cdot}hr$ and $5{\tiems}10^{-4}g/100cm^2{\cdot}hr$ respectively.

  • PDF

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.