• Title/Summary/Keyword: air and water temperatures

Search Result 404, Processing Time 0.029 seconds

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A (소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구)

  • Lee, Byungmoo;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

Enhancement of Antioxidant Activity of Onion Powders by Browning during Drying Process (건조과정 중 갈변에 의한 양파가루의 항산화 특성 연구)

  • Lee, Dong-Jin;Han, Jung-Ah;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.15-19
    • /
    • 2016
  • Drying process was applied to increase the antioxidant activity of onion powder: freeze-drying or air-drying at 50, 70, and $90^{\circ}C$ and onion extracts were obtained from each powder using water or aqueous ethanol (50%) at $25^{\circ}C$ and $60^{\circ}C$. In the color analysis, the freeze-dried powders showed higher $L^*$ and lower $a^*$ and $b^*$ values than did the air-dried ones. The browning index of powders air-dried at $90^{\circ}C$ was significantly higher than that of freeze-dried powders or those air-dried at temperatures below $90^{\circ}C$. Phenolic content in the extracts was 4.02-23.12 mg gallic acid equivalent/g sample, and was the highest in the extract from the sample air-dried at $90^{\circ}C$, regardless of the extraction condition. The highest antioxidant activity, measured by 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid and 1,1-diphenyl-2-picrylhydrazyl methods, was found in the powder air-dried at $90^{\circ}C$, which induced browning. These findings indicate that antioxidant activity depends more on browning during drying than on extraction conditions.

A Study on the Temperature Characteristics of the Floor Cooling System of Mock-up Experimentent (Mock-up실험에 의한 바닥복사 냉방시스템의 온도특성에 관한 연구)

  • Yoo, Ho-Chun;Lee, Young-A
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.48-57
    • /
    • 2008
  • The research analyzed the distribution of the indoor temperatures of a radiant floor cooling system through mock-up experiments. It investigated the temperature difference of feed water, the vertical temperature difference of indoor air, the temperature difference of floor surface, and so on. The following is the results of the research. First, the research shows that the difference between indoor temperature and outside temperature was the smallest when the temperature of feed water was set at 16$^{\circ}C$. In addition, the temperature changes according to indoor positions (wall, room, floor, and ceiling) were the most uniform. Thus, the research found that the cold water temperature of 16$^{\circ}C$ is the most proper. In addition, it confirmed that the feed water temperature of 18$^{\circ}C$ is effective because the temperature can lower the temperature of a room to 13.55$^{\circ}C$, which is lower than the temperature of a non-cooling mode. Second, an investigation on the temperature distribution of vertical air in indoor space shows that the temperature distribution had a difference of 0.2 to 1.9$^{\circ}C$ on the average, which satisfies the range of 3.0$^{\circ}C$ in the standard of ISO.

Development of a Digital Soil Tensiometer using Porous Ceramic Cups (다공 세라믹 컵을 이용한 디지털 토양수분 장력계 개발)

  • Jung, In-Kyu;Chang, Young-Chang;Kim, Ki-Bok;Kim, Yong-Il;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.448-454
    • /
    • 2007
  • This study was conducted to develop a 100 kPa soil tensiometer mainly consisted of a porous ceramic cup, water-holding tube, and a digital vacuum gauge, through theoretical design analysis and experimental performance evaluation. Major findings were as follows. 1. Theoretical analysis showed that air entry value of a porous media decreased as the maximum effective size of the pore increased, and the maximum diameter of the pores was $2.9\;{\mu}m$ for measuring up a 100 kPa of soil-water tension. 2. Property analysis of tensiometer porous cups supplied in Korean domestic market indicated that main components were $SiO_2$ and $Al_2O_3$ with a porosity range of $33.8{\sim}49.3%$. 3. The porous cup selected through sample fabrication and air-permeability tests showed weight ratios of 87% and 11% for $Al_2O_3$ and $SiO_2$. The analysis of SEM (scanning electron microscope) images showed that the sample was sintered at temperatures of about $1150^{\circ}C$, which consisted of pores with sizes of up to 25% of those for commercial porous cups. 4. The prototype soil tensiometer was fabricated using the developed porous cup and a digital vacuum gauge that could measure water tension with a pressure of 85 kPa in air tests. 5. In-soil tests of the prototype conducted during a period of 25-day drying showed that soil-water tension values measured with the prototype and commercial units were not significantly different, and soil-water characteristic curves could be established for different soils, confirming accuracy and stability of the prototype.

An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation (태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구)

  • Lee, Kwang-Seob;Putrayudha S., Andrew;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

Vertical Variations Analysis of Air Temperature and CO2 Concentration in the Grassplots (잔디밭에서 기온과 이산화탄소 농도의 연직 변동 분석)

  • So, Yoon Hwan;Kang, Dong Hwan;Kim, Il Kyu;Kim, Byung Woo;Yoon, Hwan Jin;Kim, Si Hyeon;Son, Yong Seok;Shin, Jung Hyeon;Ahn, Jeong Woo
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.147-157
    • /
    • 2017
  • This study investigated the characteristics of variations in carbon dioxide concentration and air temperature with the vertical change of surface in a grassplot. Field observations were carried out at a grassplot in Gyeongnam Science High School, over four days in August and November, 2015. Continuous observation equipment (GMP343, VAISALA) was installed at the LP (0.1 m from the surface) and UP (1.1 m from the surface) points, and the carbon dioxide concentration and air temperature were measured simultaneously at 1-min intervals. To summarize the results of the observation, August had higher than average concentrations of carbon dioxide, while November showed average air temperatures. Moreover, the concentration of carbon dioxide was higher at the UP point, while the air temperature was higher at the LP point. The correlation coefficient of carbon dioxide concentration between the UP and LP points was 0.80 in August across all the four days, while it was higher in November at 0.58-0.95. The results of the regression analysis of carbon dioxide concentration with air temperature changes for both August and November showed a distinct change at the LP point (R2=0.36-0.76), as compared to the UP point (R2=0.1-0.57). Between the UP and LP points, the carbon dioxide concentration and air temperature regression analysis results indicated that an active exchange was taking place between the two points.

Atmospheric Characteristics of Fog Incidents at the Nakdong River : Case Study in Gangjeong-Goryeong Weir (낙동강 유역 안개 발생시 기상 특성: 강정고령보 사례를 중심으로)

  • Park, Jun Sang;Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Jang, Jun Yeong;Kang, Misun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.657-670
    • /
    • 2015
  • Visibility and Automatic Weather System(AWS) data near Nakdong river were analyzed to characterize fog formation during 2012-2013. The temperature was lower than its nearby city - Daegu, whereas the humidity was higher than the city. 157 fog events were observed in total during the 2 year period. About 65% of the events occurred in fall (September, October, and November) followed by winter, summer, and spring. 94 early morning fog events of longer than 30 minutes occurred when south westerly wind speed was lower than 2 m/s. During these events, the water temperature was highest followed by soil surface and air temperatures due to the advection of cold and humid air from nearby hill. The observed fog events were categorized using a fog-type classification algorithm, which used surface cooling, wind speed threshold, rate of change of air temperature and dew point temperature. As a result, frontal fog observed 6 times, radiation 4, advection 13, and evaporation 66. The evaporation fog in the study area lasted longer than other reports. It is due to the interactions of cold air drainage flow and warm surface in addition to the evaporation from the water surface. In particular, more than 60% of the evaporation fog events were accompanied with cold air flows over the wet and warm surface. Therefore, it is needed for the identification of the inland fog mechanism to evaluate the impacts of nearby topography and land cover as well as water body.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Estimation of Water Temperature by Heat Balance Method in Paddy Field. (열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jung-Nam;Takami, Shinich
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • To determine irrigated water temperature under the rice plant canopy, micrometeorological elements air temperature, relative humidity, water temperature, solar radiation, and the rice leaf area index the rice plant canopywere measured. Water temperature under the canopy was also estimated from these data. The results are as follows ; 1. Maximum and minimum temperatures of water in the paddy field were higher about $1-2^{\circ}C$ than those of air temperature. 2. Mean water temperature under the canopy became lower than mean air temperature when the leaf area indices were greater than 4, because of decreased light penetration rates 3. Penetration amounts of net radiation under the canopy can be estimated by an exponential equation 4. Estimated water temperatures under the canopy by a combination method model was adaptable in Suweon, a plain area, but its accuracy was lower in Jinbu, an alpine area.

  • PDF

Thermal Characteristics of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환식 무토양재배시스템의 양액 및 배지의 온도변화 특성)

  • Son, Jung-Eek;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1998
  • The root-zone environment is an important factor to the plant growth and it is closely related to the thermal characteristics of the root media. In this study thermal characteristics of root media with ambient environmental conditions were analyzed. The temperatures of nutrient solution as well as inside air of culture bed were measured in Nutrient Film Technique(NFT) and Deep Flow Technique(DFT) systems, and also the temperatures of root media measured in aggregate culture systems , The temperature of nutrient solution of NFT system with as low as 3$\ell$/min of flow rate was 3$^{\circ}C$ higher than that with 5 $\ell$/min of flow rate in the daytime, and the temperature of inside air was 2$^{\circ}C$ higher at night. And the temperature of nutrient solution of DFT system with as low as 0.8 cm of water level was 1-2$^{\circ}C$ higher than that with 1 8 cm in the daytime, and the temperature of inside air was almost same at night. The root-zone temperatures in the perlite and rockwool granulate systems with film mulching were 3$^{\circ}C$ higher than those without film mulching in the daytime. However, the rockwool slab system with film mulching showed the same trend as rockwool granulate system, but relatively higher temperature than any other medium because of the exposure of media surface to the ambient air. Additionally the temperature below the plant was measured 3$^{\circ}C$ lower than that between plants.

  • PDF