• Title/Summary/Keyword: agricultural reservoirs

Search Result 448, Processing Time 0.03 seconds

Trophic State and Water Quality Characteristics of Korean Agricultural Reservoirs (우리나라 농업용 저수지의 영양상태 및 수질특성)

  • Lee, Jae-Yon;Lee, Jae-Hoon;Shin, Kyung-Hoon;Hwang, Soon-Jin;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.223-233
    • /
    • 2007
  • For this study, we analyzed spatial and temporal patterns of trophic state and water quality over the period of $2002{\sim}2005$, using the water chemistry dataset obtained from the Korea Rural community & Agriculture corporation. Most reservoirs, based on TN, showed eutrophic (about 88% of the total). About 20% of agricultural reservoirs, based on TP, showed eutrophic after the criteria of OECD (1982), while 71% and 3% were Hesotrophic and oligotrophic, respectively. Seasonal variations were evident due to the intense monsoon rain during July${\sim}$August; conductivity, COD, SS, nutrients, and chlorophyll-${\alpha}$ (CBL) increased in the postmonsoon compared to the premonsoon. TP values had positive functional relations with conductivity, COD, and CHL values. COD and SS peaked during the intense monsoon. Mean values of TP and CHL values were two times greater in the intense monsoon than the weak monsoon. The increased TP was probably due to inorganic suspended solids from point and non-point sources during the monsoon. Ratios of TN : TP had strong in- verse relations ($R^2$=0.843, p<0.001, n=34) with TP, but not with TN (p>0.05, n=34). Log10-transformed CHL increased with TP in most P-limited reservoirs $(Log_{10}TP=0.5{\times}Log_{10}CHL+0.086)$. Similarity analysis, based TN, TP, and CHL showed that three groups were separated at 90% similarity level; One group was reservoirs with high salinity nearby the seawater, and the other two groups were reservoirs with a low salinity of the inland, and intermediate salinity, respectively.

A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning (지자체 농업가뭄 예·경보를 위한 미계측 저수지의 유입량 추정 및 평가)

  • Choi, Jung-Ryel;Yoon, Hyeon-Cheol;Won, Chang-Hee;Lee, Byung-Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.395-405
    • /
    • 2021
  • When issuing forecasts and alerts for agricultural drought, the relevant ministries only rely on the observation data from the reservoirs managed by the Korea Rural Community Corporation, which creates gaps between the drought analysis results at the local (si/gun) governments and the droughts actually experienced by local residents. Closing these gaps requires detailed local geoinformation on reservoirs, which in turn requires the information on reservoirs managed by local governments across Korea. However, installing water level and flow measurement equipment at all of the reservoirs would not be reasonable in terms of operation and cost effectiveness, and an alternate approach is required to efficiently generate information. In light of the above, this study validates and calibrates the parameters of the TANK model for reservoir basins, divided them into groups based on the characteristics of different basins, and applies the grouped parameters to unmeasured local government reservoirs to estimate and assess inflow. The findings show that the average determinant coefficient and the NSE of the group using rice paddies and inclinations are 0.63 and 0.62, respectively, indicating better results compared with the basin area and effective storage factors (determinant coefficient: 0.49, NSE: 0.47). The findings indicate the possibility of utilizing the information regarding unmeasured reservoirs managed by local governments.

Efficient Leakage Estimation of Public Agriculture Groundwater in Jeju Island (제주도 공공 농업용 지하수의 효율적 누수량 산정 연구)

  • Kim, MinChul;Park, WonBae;Kang, BongRae;Kim, JiMyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, leakage ratios of Jeju Island's public agricultural groundwater were calculated by utilizing field measurements of groundwater level and surface reservoir water level. The average leakage ratios were 75.6% at groundwater well A and 57.5% at well B, with the ratio inversely proportional to agricultural water usage. The level of agricultural reservoirs varied at constant intervals at night, and the amount of water leakage associated with the variation was estimated as 0.1 - 16.3 ㎥/h. The leakage ratio was also influenced by pipeline length, average slope, and number of farmhouses. Currently, the estimation of agricultural water leakage on Jeju Island is based upon field inspection which is very labor- and cost intensive. The leakage ratio estimated by monitoring the reservoirs associated with the well A and B were 73.3 and 54.7%, respectively, consistent with the values obtained by field measurements.

Effects of Physical Parameters on Water Quality in Agricultural Reservoirs (농업용 저수지의 물리적 인자가 수질에 미치는 영향)

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Kim, Ho-Il;Hwang, Soon-Jin;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.28-35
    • /
    • 2002
  • The effect of physical parameters on water quality was analyzed using monitoring data of 193 agricultural reservoirs. The retention time of reservoirs ($t_d$) ranged between 10 and 140 days, and the ratio of drainage area (DA) to reservoir surface area (SA) was between 10 and 120. Both ratios of DA/SA and total area (TA)/ reservoir storage (ST) in Korean agricultural reservoirs were relatively greater than those in natural lakes in other countries. As retention time was plotted against DA/SA ratio, it was shorter in Korean reservoirs than natural lakes. The semi-logarithmic relationship between TA/SA and t>$t_d$ was $t_d\;=\;42.21(TA/ST)^{-1}$ (n = 50, $R^2\;=\;0.89$). While areal loading of total phosphorus (TP) was below $4\;gTP{\cdot}m^{-2}{\cdot}yr^{-1}$ in general, it exceeded $10\;gTP{\cdot}m^{-2}{\cdot}yr^{-1}$ in reservoirs where DA/SA ratio was greater than 100, which implies that areal loading of TP increases as DA/SA ratio increases. Chl-a concentration was positively related with the mean depth of reservoir, implying the higher Chl-a concentration with deeper the mean depth. Therefore, the deeper reservoir might be advantageous in water quality management perspective if other morphological conditions are similar. The empirical regression equation using physical parameters was also suggested in the estimation of TP concentration in the reservoirs. Combined information presented in this paper might be applicable to the water quality management in agricultural reservoirs.

Behavior of Failure for Embankment and Spillway Transitional Zone of Agriculture Reservoirs due to Overtopping (농업용 저수지 월류시 제체와 여수토 접속부의 붕괴거동)

  • Noh, Jae Jin;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • In this study, an experiment with large-scale model was performed according to raising the embankment in order to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The pore water pressure, earth pressure, settlement and failure pattern by a rapid drawdown and overtopping were compared and analyzed. The pore water pressure and earth pressure at spillway transitional zone by overtopping increased a rapidly with the expansion of seepage erosion, but the crest showed a smally change due to effect of the inclined core type. And it is considered an useful data that can accurately estimate the possibility of failure of the reservoirs. A settlement at overtopping decreased a rapidly due to failure of crest. The relative settlement difference due to change of the water level at the upstream and downstream slope cause increase largely crack of crest. The behavior of failure by overtopping was gradually enlarged towards reservoirs crest from the bottom of the spillway transition zone, the inclined core after the raising the embankment was influenced significantly to prevent the seepage erosion.

Overtopping Model Experiments and 3-D Seepage Characteristics of the Embankment of Deteriorated Homogeneous Reservoirs (노후화된 균일형 저수지 제체의 월류모형실험과 3차원 침투특성)

  • Lee, Young Hak;Lee, Tae Ho;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.13-23
    • /
    • 2019
  • In this study, an overtopping model experiments and three dimensional seepage characteristics at the deteriorated homogeneous reservoirs were performed to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The failure pattern, pore water pressure, earth pressure and settlement by overtopping were compared and analyzed. The pattern of the failure by overtopping was gradually enlarged towards reservoirs crest from the spillway transition zone at initial stage. In the rapid stage and peak stage, the width and depth of failure gradually increased, and the pattern of the failure appeared irregular and several direction of the erosion. In the early stage, the pore water pressure at spillway transitional zone was more affected as its variation and failure width increased. In the peak stage, the pore water pressure was significantly increased in all locations due to the influence of seepage. The earth pressure increased gradually according to overtopping stage. The pore pressure by the numerical analysis was larger than the experimental value, and the analysis was more likely to increase steadily without any apparent variation. The horizontal and vertical displacements were the largest at the toe of slope and at the top of the dam crest, respectively. The results of this displacement distribution can be applied as a basis for determining the position of reinforcement at the downstream slope and the crest. The collapse in the overtopping stage began with erosion of the most vulnerable parts of the dam crest, and the embankment was completely collapsed as the overtopping stage increased.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

Safety Management Improving Way of Small Agricultural Reservoir (소규모 농업용 저수지의 안전관리 개선 방향)

  • Shin, Eun-Chul;Lee, Jong-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • There are about 17,531 agricultural small dams and reservoirs in Korea. Ninety five percent of the small dams were constructed by earthfill and they were suffered severe damages or expected to repairs or rehabilitation. Therefore dams are evaluated and are identified their problems. Small Dams should be repaired before too late. Small dam safety evaluation is required to guarantee the proper functions of the existing agricultural dams and reservoirs in time and to minimize the damage.

Long-term changes of water quality with regard to main Pollutant Sourses in Agricultural Reservoirs (주오염원별 농업용저수지의 장기 수질특성변화)

  • Choi, Sun-Hwa;Kim, Ho-Il;Yoon, Kyung-Seup;Park, Jong-Min
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.425-428
    • /
    • 2002
  • This study has been carried out to analized of long term changes of water quality with regard to main pollutant sources in agricultural reservoirs on the basis of data during 1996-2001. The major source was domestic wastewater(DWW) and water pollution by non-point sources(NPS) is increasing as time goes. It was determined that Seasonly average values of DWW were pH $7.6{\sim}8.7$, COD $7.0{\sim}9.4$, T-N $0.74{\sim}2.07$, T-P $0.05{\sim}0.62$, Live-stock wastewater(LWW) were pH $7.5{\sim}8.9$, COD $5.5{\sim}9.8$, T-N $0.57{\sim}1.91$, T-P $0.04{\sim}0.13$, NPS were pH $7.1{\sim}8.3$, COD $3.1{\sim}5.2$, T-N $0.29{\sim}1.44$, T-P $0.02{\sim}0.07$. Fluctuation of DWW and LWW were very wide and variable long term patterns of them were similar. Trophic states by Carlson Index of DWW and LWW was classified as eutrophic to hypretrophic from chl-a, T-P concentration.

  • PDF