• Title/Summary/Keyword: agricultural biomass

Search Result 558, Processing Time 0.028 seconds

Investigation on Regional Distribution of Potential Energy Production with Agricultural By-Products in Agricultural Sector

  • Park, Woo-Kyun;Lee, Sun-Il;Shin, Joung-Du;Kim, Gun-Yeob;Kim, Yi-Hyun;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.343-350
    • /
    • 2013
  • The objectives of this study were to estimate the potential biomass yield by using the biomass conversion index and evaluate the potential energy production by using the energy conversion index of biomass. Estimating the total biomass yield in Korea showed 9,646.3 thousand tons produced in 2012. Subsequent evaluation of the potential energy production using the estimated biomass yield in 2012 indicated that the calorific values were varied from 3,800 to 4,500 kcal $kg^{-1}$ for crop- and from 4,100 to 4,300 kcal $kg^{-1}$ for woody-based biomass, respectively. Among the examined biomass materials, the pruned branch of a nut tree appeared to be the greatest in bio-energy production showing 6,300 kcal $kg^{-1}$ in calorific value. Total potential energy production from agricultural by-products was estimated approximately at 3,966,000 TOE. Among the agricultural by-products examined, rice straw showed the greatest energy production potential being at 2,321,000 TOE. Furthermore, it might contribute to establishing the countermeasures of biomass utility in agricultural sector based on regional distribution chart of the potential biomass and energy yields in Korea.

Evaluation of Agricultural Biomass Resources for Renewable Energy - Biomass from Orchards and Non-paddy Fields - (농업 부산물 바이오매스 자원의 부존특성 조사 - 과수원 및 밭작물 부산물을 중심으로 -)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.85-92
    • /
    • 2004
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce significant amount of energy from biomass around the world. In spite of the potential, there are a few efforts in biomass utilization in this nation. In this study, elemental biomass data was obtained with respect to the amount and calorific values of agricultural residues. Rice straw and husks were not included in the evaluation due to their demand from alternative uses such as livestock feedings, bedding materials, and so forth. Dry basis high calorific values are about 4,500 kcal/kg for all the agricultural residues investigated, similar to literature data. Energy densities or unit area energy value, from pepper and sesame were significant and comparable to those of woody biomass. These elemental data for biomass resources will Provide the background of Planning and development of biomass energy Program, which is getting more feasible along with advances in energy conversion technologies such as micro gas turbines.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Estimation of Community-Based Unused Biomass Generation (지역단위 미이용 바이오매스 발생량 추정)

  • Choi, Eun-Hee;Lee, Mun-Yong;Yoon, Young-Man;Kim, Chang-Hyun;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.447-458
    • /
    • 2012
  • This study was carried out to evaluation of biomass generation mechanisms and to propose the estimation method of biomass generation. Agricultural by-product biomass is generated during crops cultivation and after harvest. However these are not uniformly generated yearly and these depending on the seasons. For planning of biomass utilization, accurate information of the biomass resources is needed, especially characteristic and productivity of biomass are necessary. Agricultural by-product biomass are generated in a wide area being scattered and it is one of the major reason why agricultural biomass utilization is not activated compared with other waste biomass. In this study, estimation and evaluation biomass generation is achieved in specific spatial and temporal boundary, A-city in Gyeongi-do and september to November respectively. Quantity and quality of by-product biomass show big difference depending on the crop species and cultivation periods and these difference bring up that accurate biomass estimation should be considered during planning of biomass utilization and technology selecting for biomass converting to energy and other forms.

Evaluation of the Social Effects of the Biomass Use (바이오매스 이용의 사회적 평가)

  • Jung, Man-Chul;Kang, Choong-Kwan;Park, Min-Su
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.359-375
    • /
    • 2004
  • Recently, many researches on the biomass of the agricultural and livestock wastes are being conducted in several respects. The use of biomass is of benefit to the curtailment of oil import, environmental pollution decrease, global warming mitigation and so on. And, in the agricultural sphere, making use of agricultural byproducts can contribute to the revitalization of the agricultural industry and rural community. In other words, making new products or energy by using biomass have a possibility to be developed as a new industry. The industry can create new businesses and job opportunities for rural dwellers. Also, major 3 positive effects of market formation for the agricultural wastes, increase of the idle land use and creation of the new business are expected. However, the use of biomass may be difficult to secure a proper right as a market good in the autonomic market economy. It is necessary to establish or amend related laws or systematic tools for the revitalization of the biomass use. Also, it is required for the government to bear partial costs of the facilities and others in the beginning stage.

  • PDF

Analysis of Feasible Biomass Potential Using GIS and Aggregating Agricultural Census Data (GIS와 농업통계자료를 활용한 바이오매스 가용부존량 분석)

  • Kim, Han-Joong;Hong, Seong-Gu
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.82-94
    • /
    • 2010
  • Recently, biomass application for energy is getting more interests from many countries since biomass is widely available over the nation wide, whereas fossil fuels are produced in several limited regions. Recognizing the importance, government is promoting renewable energy use in Korea. The locational characteristics of the existing biomass potential directly can be used to decide scale of power plant for local agricultural facility. Although there are a few studies on feasible biomass potential in local areas, it is expected that both government and commercial sectors recognize the potential of biomass energy and the importance of reducing greenhouse gases. When planning biomass energy systems, biomass price is determined by the costs of collection, transportation, chipping, drying if required. In this paper investigates the economic and spatial characteristic of biomass location by land use map. However typical area of each categories in local region is not correct to agricultural census data. Therefore we concerned about how to calculate feasible biomass potential which it can be describing total amount of plant scale, and to match both of data. Even though its spatial distribution, in rural area in Korea, to expand biomass energy programs in the area, government serve to find areas of higher biomass production with suitable locations for plants to convert to bio-energy in order to increase the usage of renewable energy.

  • PDF

Energy consumption and environmental load of agricultural sector (농림어업의 에너지소비와 환경부하)

  • Seo, Se-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.823-828
    • /
    • 2007
  • In compare with a major developed countries, Korea consumes much energy, but also eliminates much carbon dioxide. Agricultural sector eliminate much carbon dioxide than industrial sector. In Kyoto protocol, Korea needs to reduce carbon dioxide. One way to reduce carbon dioxide is utilization of biomass in rural area. This paper focus on utilization of biomass in rural area. If use 20% potential amount of biomass, it obtain 50% of TPES on agricultural sector. The condition of utilization biomass is connected with agricultural policy, environmental policy, and energy policy. And environmental restriction keep pace with economical incentive.

  • PDF

Estimation of Power Generation Capacity from Agricultural Biomass (농업부산물 부존량 조사 및 발전 가능량의 추정)

  • Hong, Seong-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.595-598
    • /
    • 2003
  • Elemental data was collected for agricultural biomass such as pruned branches with respect to unit area production and heating values. The results indicated that higher heating values for the biomass was comparable to those of woody biomass. Approximate estimations of power generation from biomass showed that over 100kW power plants could be installed in some districts.

  • PDF

State of art in utilization of agricultural residues and identification of priority biomass energy projects in the republic of Korea

  • Park, Soon-Chul-;Lee, Jin-Suk-;Cho, Jae-Kyung;Hong, Jong-Joon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.20-32
    • /
    • 1993
  • Although the importance of agricultural sector decreased over the last several decades because of the economic growth in Korea led by the development of manufacturing sector, the biomass energy resources such as urban wastes, industrial wastes including agricultural residues emerged recently as a major target of development mainly because of environmental issues. (omitted)

  • PDF

Effect of Organic Content on Anaerobic Biodegradability by Agricultural Waste Biomass

  • Shin, Kook-Sik;Yoon, Young-Man;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Recently interest on production of biogas from biomass resources has increased because of climate change in worldwide. In this study, anaerobic digestion efficiency of 17 different types of agricultural waste was evaluated using biochemical methane production potential estimated from the International biochemical methane potential standard method (Germany VDI4630). As a result, theoretical biochemical methane potential ($B_{th}$) of agricultural waste biomass ranged from 0.266 to $0.488Nm^3kg^{-1}$-Volatile Solid $(VS)_{added}$. Ultimate biochemical methane potential ($B_u$) of agricultural waste biomass ranged between 0.176 and $0.417Nm^3kg^{-1}-VS_{added}$. The agricultural waste biomass anaerobic biodegradability with $B_u/B_{th}$ and VDI4630 determined by VS contents was 36.0~95.9% and 30.8~91.1%, respectively. Ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results.