• Title/Summary/Keyword: agreement protocols

Search Result 115, Processing Time 0.028 seconds

An Enhancement of Simple Authenticated Key Agreement Protocol (개선된 '간단한 인증키 동의 (Simple Authenticated Key Agreement)'프로토콜)

  • Kim Young-Sin;Kim Yoon-Jeong;Hwang Jun
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.95-102
    • /
    • 2003
  • The Diffle-Hellman Key Exchange scheme can produce a common session key between the two communicators, but its problem is that it makes a man-in-the middle attack possible. To solve problems like these, several protocols have been put forward, and the Simple Authenticated Key Agreement (SAKA) Protocol is among them. This protocol has been suggested by Seo-Sweeney, Tseng, and Ku-Wang, respectively, In this paper, we will put forward a new protocol that has been improved from all the original protocols mentioned above, but is still safe and quick to use, While the existing protocol divides the common session key production stage and the verification stage, the protocol suggested in this paper takes care of both of those stages simultaneously, therefore improving the processing performance.

  • PDF

Group Key Agreement Protocols for Combined Wired/Wireless Networks (유무선 통합 네트워크 환경에 적합한 그룹 키 동의 프로토콜)

  • Nam Junghyun;Kim Seungjoo;Won Dongho;Jang Chungryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.607-615
    • /
    • 2005
  • Group key agreement protocols are designed to allow a group of parties communicating over a public network to securely establish a common secret key. Over the years, a number of solutions to this problem have been proposed with varying degrees of complexity. However, there seems to have been no previous systematic look at the growing problem of key agreement over combined wired/wireless networks, consisting of both high-performance computing machines and low-power mobile devices. In this paper we present an efficient group key agreement scheme well suited for this networking environment. Our scheme meets efficiency, scalability, and all the desired security requirements.

MULTIPARTY KEY AGREEMENT PROTOCOL BASED ON SYMMETRIC TECHNIQUES

  • Lee, Hyang-Sook;Lee, Young-Ran;Lee, Ju-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.169-179
    • /
    • 2003
  • In this paper, we propose multiparty key agreement protocols by generalizing the Blom's scheme based on 2 variable polynomials. Especially we develop three party and four party key agreement schemes with security. The advantage of the new schemes is to have small demands on storage space.

ID-based Authenticated Key Agreement for Unbalanced Computing Environment (비대칭 컴퓨팅 환경을 위한 ID-기반의 인증된 키 동의 프로토콜)

  • Choi Kyu-young;Hwang Jung-yeon;Hong Do-won;Lee Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.23-33
    • /
    • 2006
  • Key Agreement protocols are among the most basic and widely used cryptographic protocols. In this paper we present an efficient O-based authenticated key agreement (AKA) protocol by using bilinear maps, especially well suited to unbalanced computing environments : an ID-based AKA protocol for Server and Client. Particularly, considering low-power clients' devices, we remove expensive operations such as bilinear maps from a client side. Our protocol uses signcryption and provide security in random oracle model.

Authentication and Key Agreement Protocol based on NTRU in the Mobile Communication (NTRU기반의 이동 통신에서의 인증 및 키 합의 프로토콜)

  • 박현미;강상승;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2002
  • As the electronic commerce increases rapidly in the mobile communication, security issues become more important. A suitable authentication and key agreement for the mobile communication environment is a essential condition. Some protocols based on the public key cryptosystem such as Diffie-Hellman, EIGamal etc. were adapted in the mobile communication. But these protocols that are based on the difficult mathematical problem in the algebra, are so slow and have long key-length. Therefore, these have many limitation to apply to the mobile communication. In this paper, we propose an authentication and key agreement protocol based on NTRU to overcome the restriction of the mobile communication environment such as limited sources. low computational fewer, and narrow bandwidth. The proposed protocol is faster than other protocols based on ECC, because of addition and shift operation with small numbers in the truncated polynomial ring. And it is as secure as other existent mathematical problem because it is based on finding the Shortest or Closest Vector Problem(SVP/CVP).

PERFORMANCE ANALYSES OF PATH RECOVERY ROUTING PROTOCOLS IN AD HOC NETWORKS

  • Wu, Mary;Kim, Chong-Gun
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.235-249
    • /
    • 2008
  • On-demand routing protocol in ad hoc network is that establishes a route to a destination node only when it is required by a source node. But, it is necessary to reestablish a new route when an active route breaks down. The reconstruction process establishes another route by flooding messages from the source to the destination, cause not only heavy traffic but also long delays in route discovery. A good method for analyzing performance of protocols is important for deriving better systems. In this paper, we suggest the numerical formulas of a representative on-demand routing protocol AODV, ARMP, and RRAODV to estimate the performance of these routing protocols for analyzing the performance of these protocols. The proposed analytical models are very simple and straightforward. The results of analysis show good agreement with the results of computer simulations.

  • PDF

Security Flaws in Authentication Protocols with Anonymity for Wireless Environments

  • Xu, Jing;Feng, Dengguo
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.460-462
    • /
    • 2009
  • The emerging wireless networks require the design of new authentication protocols due to their dynamic nature and vulnerable-to-attack structure. Recently, Wu and others proposed a wireless authentication protocol which is claimed to be an improvement of the authentication protocol proposed by Lee and others which provides user anonymity. In this letter, we show that these protocols have a common flaw and that these protocols fail to provide user anonymity. We also propose a modification method to solve this problem.

Group Key Agreement From Signcryption

  • Lv, Xixiang;Li, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3338-3351
    • /
    • 2012
  • There is an intuitive connection between signcryption and key agreement. Such a connector may lead to a novel way to construct authenticated and efficient group key agreement protocols. In this paper, we present a primary approach for constructing an authenticated group key agreement protocol from signcryption. This approach introduces desired properties to group key agreement. What this means is that the signcryption gives assurance to a sender that the key is available only to the recipient, and assurance to the recipient that the key indeed comes from the sender. Following the generic construction, we instantiate a distributed two-round group key agreement protocol based on signcryption scheme given by Dent [8]. We also show that this concrete protocol is secure in the outsider unforgeability notion and the outsider confidentiality notion assuming hardness of the Gap Diffie-Hellman problem.

Design and Performance Analysis of Queue-based Group Diffie-Hellman Protocol (QGDH)

  • Hong, Sunghyuck;Lee, Sungjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.149-165
    • /
    • 2013
  • Current group key agreement protocols, which are often tree-based, have unnecessary delays that are caused when members with low-performance computer systems join a group key computation process. These delays are caused by the computations necessary to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of queue-based group key generation. We propose an efficient group key agreement protocol and present the results of performance evaluation tests of this protocol. The queue-based approach that we propose is scalable and requires less computational overhead than conventional tree-based protocols.

Re-Ordering of Users in the Group Key Generation Tree Protocol (사용자 순서 재조정을 통한 그룹 키 생성 트리 프로토콜)

  • Hong, Sung-Hyuck
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.247-251
    • /
    • 2012
  • Tree-based Group Diffie-Hellman (TGDH) is one of the efficient group key agreement protocols to generate the GK. TGDH assumes all members have an equal computing power. As one of the characteristics of distributed computing is heterogeneity, the member can be at a workstation, a laptop or even a mobile computer. Therefore, the group member sequence should be reordered in terms of the member's computing power to improve performance. This research proposes a reordering of members in the group key generation tree to enhance the efficiency of the group key generation.