• Title/Summary/Keyword: agitation rate

Search Result 254, Processing Time 0.03 seconds

Studies on the Cellulase of Penicillium sp. Isolated from Soils - (II) Culture Conditions of Penicillium sp. C13-13 Strain - (토양에서 분리한 Penicillium sp.가 생산하는 Cellulase에 관한 연구 - (II) Penicillium sp. C13-13 주(株)의 배양조건 검토 -)

  • Kim, Yong-Bae;Yi, Pyung-Kuk;Choi, Seung-Ho
    • The Korean Journal of Mycology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 1974
  • 1. Penicillium sp. C 13-13 strain was obtained with the treatment of mutagenic agents(N.T.G.) and by single spore isolation method from the Penicillium sp. C8-14 strain, which was reported in the previous paper. 2. The above strain had a few spores and to obtain seed culture, it was cultured at $30^{\circ}C$ and initial pH $4.5{\sim}5.0$, with air rate 6l/min., and agitation 600 rpm for 48 hours in 10% wheat bran medium in 20l- Jar fermenter. When the broth that had above 70ml of mycelium was inoculated into wheat bran medium and incubated at $29{\sim}33^{\circ}C$ for 72 hrs, the cellulase activity of the koji was higher. 3. Adding calcium chloride and magnecium sulfate to the wheat bran medium to 1.5% and 0.015% respectively, the cellulase activity of the koji was higher than that of the control.

  • PDF

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense (용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

The sedative effect of intranasal Midazolam additionally administered to children who fail to respond properly to oral Chloral Hydrate (Chloral hydrate 경구투여의 진정효과가 나타나지 않는 소아환자에 대한 Midazolam의 비강내 추가 투여)

  • Yoo, Byung-Kyu;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.537-542
    • /
    • 1997
  • Chloral hydrate is one of the most widely used sedative agents to control the difficult-to-treat young age group in the dental clinic. The normal onset time of oral Chloral hydrate is 30-45 minute with some variations. We are often frustrated see the patient still awake and cry with agitation even after far more than the normal onset time. In such a case, the patient has to be rescheduled for another sedation visit with different agents and/or routes which greatly disappoints the guardians. This case report presents a sedative regimen that can possibly help the clinician complete scheduled treatment without postponement. We have tried additional administration of Midazolam intranasally to 22 patients of those who failed to respond properly to the initial dose(50-75mg/kg) of oral Chloral hydrate. The average age and weight of the patients was 34.2 months(22-61 mos.) and 15.2 kg(10-17 kg) respectively. Half of the regular dose of Midazolam(0.1mg/kg) was administered intranasally. using needless syringe in 42 cases without notable resistance of the patient. The onset was very rapid in most cases and colud proceed the treatment under the constant monitoring by Pulse oximeter. All the planned procedures could be completed in 93.2 % (69.4% of 'Good' plus 23.8% of 'Fair' rating)with only 6.8 %('Poor' rating) of failure rate. Evidence of adverse effect was not detected or reported during and/or after the procedures.

  • PDF

Monitoring on Alcohol and Acetic acid Fermentation Properties of Muskmelon (참외의 알콜 및 초산발효 특성 모니터링)

  • Lee, Gee-Dong;Kwon, Seung-Hyek;Lee, Myung-Hee;Kim, Suk-Kyung;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • To use overproduction muskmelon effectively, muskmelon vinegar was prepared by two stage fermentations of alcohol and acetic acid. In the alcohol fermentation using muskmelon, alcohol content showed maximum value (7.47%) in $17.83^{\circ}Brix$ of initial sugar concentration and 82.65 h of fermentation time. Acetic acid content in alcohol fermentation revealed minimum value (0.46%) in $12.17^{\circ}Brix$ of initial sugar concentration and 60.56 h of fermentation time. The fermentation conditions for minimum residual sugar were $10.02^{\circ}Brix$ of initial sugar concentration and 105.61 h of fermentation time. The optimum conditions predicted for each corresponding physical properties of acetic acid fermentation were 200 rpm (agitation rate), 250 h (fermentation time) in acetic content and 200 rpm, 150 h in residual alcohol content.

미생물을 이용한 아라키돈산의 생산기술 개발

  • Park, Chang-Yeol;Hwang, Byeong-Hui;Yu, Yeon-U;Park, Jang-Seo
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.91-94
    • /
    • 2002
  • Arachidonic acid is a polyunsaturated fatty acid(PUFA) containing twenty carbon atoms with four double bonds. The family of w-6 PUFA, including arachidonic acid as well as r-linoleic acid, was served as intermediates in the formation of several key prostaglandin and leukotrienes. Several fungal strains of the genus Mortierella accumulate high amounts of arachidonic acid. In this study experiments were carried out to optimize the culture conditions for the mass production of fungus Mortierella alpina DSA -12 and lipid production with high proportion of polyunsaturated fatty acids, especially arachidonic acid. The batch culture was carried out in 500 L fermenter containing 50 g/L glucose, 18 g/L corn-steep powder and 100 mg/L MnS04 under $25^{\circ}C$, aeration rate of 0.5 vvm and agitation speed of 200 rpm without pH control. As a result, we could be obtained 22 g/L of cell mass with high contents of lipid 12.1 g/L) and arachidonic acid (5.1 g/L) The intermittent fed-batch culture was performed in the medium containing 20 g/L glucose and 10 g/L corn-steep powder. The final glucose concentration was 170 g/L and pH was maintained at 5.5 ${\sim}$ 6.0 by adding 14% ammonia solution. It was shown relatively high cell concentration (70.5 g/L) with high contents of lipid (45.8 g/L) and arachidonic acid 08.3 g/L). Therefore, when compared to batch cultures, the high concentration of arachidonic acid could be obtained by fed-batch culture using M. alpina DSA -12. These results imply that the fed-batch culture of M. alpina DSA -12 was feasible in industrial purpose and could be employed in the commercial production of arachidonic acid.

  • PDF

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S.;Jeong, Jae-Hoon;Mehariya, Sanjeet;Otari, Sachin V.;Madan, Bharat;Haw, Jung Rim;Lee, Jung-Kul;Zhang, Liaoyuan;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2098-2105
    • /
    • 2016
  • Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Biodegradation of Di-n-Butyl Phthalate by Rhodococcus sp. JDC-11 and Molecular Detection of 3,4-Phthalate Dioxygenase Gene

  • Jin, De-Cai;Liang, Ren-Xing;Dai, Qin-Yun;Zhang, Rui-Yong;Wu, Xue-Ling;Chao, Wei-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1440-1445
    • /
    • 2010
  • Rhodococcus sp. JDC-11, capable of utilizing di-n-butyl phthalate (DBP) as the sole source of carbon and energy, was isolated from sewage sludge and confirmed mainly based on 16S rRNA gene sequence analysis. The optimum pH, temperature, and agitation rate for DBP degradation by Rhodococcus sp. JDC-11 were 8.0, $30^{\circ}C$, and 175 rpm, respectively. In addition, low concentrations of glucose were found to inhibit the degradation of DBP, whereas high concentrations of glucose increased its degradation. Meanwhile, a substrate utilization test showed that JDC-11 was also able to utilize other phthalates. The major metabolites of DBP degradation were identified as monobutyl phthalate and phthalic acid by gas chromatography-mass spectrometry, allowing speculation on the tentative metabolic pathway of DBP degradation by Rhodococcus sp. JDC-11. Using a set of new degenerate primers, a partial sequence of the 3,4-phthalate dioxygenase gene was obtained from JDC-11. Moreover, a sequence analysis revealed that the phthalate dioxygenase gene of JDC-11 was highly homologous to the large subunit of the phthalate dioxygenase from Rhodococcus coprophilus strain G9.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF