• Title/Summary/Keyword: aggregate resources

Search Result 559, Processing Time 0.025 seconds

Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content (폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성)

  • Lee, Min-Hi;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.199-206
    • /
    • 2018
  • Due to the advantages of less raw materials and fossil fuel consumption, lower carbon footprint, and the capability of pavement performance improvement, the recycling technology of asphalt is developed and applied for road rehabilitation and construction in the western countries over the past two decades. Cold recycled asphalt mixtures are bituminous materials normally made by mixing recycled aggregate from wasted asphalt with an asphalt emulsion and water at room temperature. This paper aims at investigating the properties of cold recycled asphalt mixture with alkali-activated filler according to wasted asphalt aggregate content. As a result, as the content of wasted asphalt aggregate increased, the marshall stability of cold recycled asphalt mixture decreased and void ratio increased. Also, grading curves for cold recycled asphalt mixture as specified in GR criteria were satisfied in all aggregate mixing conditions regardless of the wasted asphalt aggregate content.

Properties of Fresh Concrete with Recycled Coarse and Fine Aggregates (순환(循環)굵은/잔골재(骨材)를 사용한 굳지 않은 콘크리트의 특성(特性))

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • The objective of this study is to investigate the properties of fresh concrete with recycled coarse and fine aggregates. Four different kinds of aggregate with natural, recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of concrete with constant slump is not affected by the replacement ratio of recycled aggregate. Also the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

A Study on Fundamental Properties of Rapid Cooling Slag to Utilize as Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 습식 급랭 전로슬래그의 기초 물성에 관한 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Se-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Recently, development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, In this study, new processing method to solve the problems of processing method of existing converter slag, namely, rapid cooling slag produced by the rapid cooling and crushing process of the high temperature melten slag into the rotary drum and then using the cooling water, compressed air and steel ball was examined fundamental properties for utilize as fine aggregate for concrete. In addition, through this study, we propose the utilization method of rapid cooling slag as fine aggregate for concrete.

Improvement on the Properties of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료를 사용한 순환골재 콘크리트의 품질 개선)

  • Moon, Dae-Joong;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The aggregate, which does not satisfy the standard of KS F 2573, was selected for this investigation. The 28day compressive strength of recycled aggregate concrete without pozzolan material was 21.7MPa, which was less than the strength of concrete made with crushed stone. However, the compressive strength at 28 days was improved by mixing early rapid hardening cement to the cement at the weight ratio of 2.5%. Furthermore, the compressive strength at 91 days and 180 days increased significantly by adding fly ash, slag powder, and diatom powder. The tensile strength of recycled aggregate concrete with pozzolan material also increased about 40% compared to the general concrete. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom powder. Relationship between compressive strength and creep coefficient was shown to the linear relation like as ${\sigma}_c=-30CF+404$.

  • PDF

Properties of Lean Mixed Mortar with Various Replacement Ratio of Coal Gasification Slag (석탄가스화발전 용융슬래그의 치환율 변화에 따른 빈배합 모르타르의 특성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.391-399
    • /
    • 2019
  • This study reviewed the possibility of recycling into exhausted aggregate resources in Korea as a means of utilizing coal gasification slag(CGS) from integrated gasification combined cycle(IGCC) while being commissioned in order to introduce the new system to Korea. In other words, in order to solve the problem of insufficient aggregate resources, CGS generated by IGCC as a residual aggregate for concrete secondary products, which is an empty mortar, was considered to replace CGS in the range of 0 to 100 % for mixed residual aggregate mixed with crushed sand A(CSa) of good quality and sea sand(SS) of deep particles, which are the most commonly used in the domestic construction industry. According to the study, replacing CGS with CSa or crushed sand B(CSb)+SS by 25 % to 50 % resulted in good results in the aspect of the granularity of the aggregate and the workability and compressive strength of cement mortar, which were found to be usable.

A Study on the Basic Properties of Foam Glass Aggregate for the Application of Insulated Foundation (단열바닥기초 적용을 위한 발포유리 골재의 기초 특성 평가)

  • Sang-Heon, Kim;Soo-Young, Moon;Hyun-Soo, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.420-427
    • /
    • 2022
  • The present study evaluated the physical, mechanical and thermal properties of the foam glass aggregate and insulation foundation with this, in order to promote the use of insulated foundations using domestically produced foamed glass aggregates. As a result of the evaluation, the compacted foam glass aggregate showed at the same level as overseas products in terms of unit volume mass, particle size and other characteristics, and a compressive strength of 40.6 N/cm2, which was superior to the existing organic insulation materials such as XPS. And the thermal conductivity of the foam glass aggregate was 0.84 W/mK, and the thermal transmittance of the specimen simulating the insulation foundation was 0.37 W/mK, so the thermal conductivity of the foam glass aggregate was estimated to be 0.80 W/mK. With these results, it was found that it is possible to use the insulation foundation with re-producted foam glass aggregate by crushing the waste from the process of producing foam glass products.

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Simulation of Particle Behaviors within a Multi-stage Impact Crusher using Discrete Element Method (이산요소법을 이용한 다단 임팩트 파쇄기 내 입자 거동 모사)

  • Yu, Myoungyuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.86-92
    • /
    • 2018
  • The amount of construction waste generated is steadily increasing every year, and the Law for Promotion of Recycling is enacted. However, it is difficult to use it as a recycled aggregate for concrete, which is presented in the quality standard of recycled aggregate with high water uptake and low density due to low separation of aggregate between concrete and cement paste. Therefore, in this study, a multi-stage impact crusher was used to remove mortar, which is essential for improving the quality of recycled aggregate. In analyzing the characteristics of the equipment, the spectrum of energy generated in each part between the particle and the equipment was calculated by using DEM. In order to generate an effective separation phenomenon, it was confirmed that the operation condition of 900 RPM was appropriate based on the ratio of the number of collisions (L/H) of the low energy group (L) to the number of collisions of the high energy group (H).

Strength Evaluation of Concrete Containing Ferronickel Slag Aggregate (페로니켈 슬래그 잔골재가 혼입된 콘크리트의 강도 평가)

  • Choi, Min Guen;Son, Jin-Su;Cho, Bong suk;Lee, Jin-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, ferronickel slag, which is the by-product generated during smelting to ferronickel used in the manufacturing of stainless steel and nickel alloys, has a limitation to use as a binder and an aggregate due to its expansive characteristics. Recently, stabilization technology of ferronickel slag has been improved and studies have been carried out to utilize ferronicke slag as fine aggregate in concrete. Therefore, in this study, basic mechanical properties of concrete used in ferronickel slag aggregate was evaluated. The compressive strength (24, 30, 40 MPa) and replacement rate of ferronickel slag aggregate (0, 10, 25, 50%) were considered as experimental variables. As a result of test, concrete replaced fine aggregate with 25% ferronickel slag aggregate showed superior performance in the compressive strength and flexural strength.

Durability characteristics of recycled aggregate concrete

  • Saravanakumar, Palaniraj;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.701-711
    • /
    • 2013
  • People started to replace natural aggregate with recycled aggregate for a number of years due to disposal problem and certain other potential benefits. Though there are number of drawbacks with use of recycled aggregates like lesser modulus of elasticity, low compressive strength, increase in shrinkage, there are results of earlier studies that use of chemical and mineral admixtures improves the strength and durability of recycled concrete. The use of recycled aggregate from construction and demolition wastes is showing prospective application in construction as alternative to natural aggregates. It conserves lot of natural resources and reduces the space required for the landfill disposal. In the present research work, the effect of recycled aggregate on strength and durability aspects of concrete is studied. Grade of concrete chosen for the present work is M50 (with a characteristic compressive strength of 50 MPa). The recycled aggregates were collected from demolished structure with 20 years of age. Natural Aggregate (NA) was replaced with Recycled Aggregate (RA) in different percentages such as 25, 50 and 100 to understand its effect. The experiments were conducted for different ages of concrete such as 7, 14, 28, 56 days to assess the compressive and tensile strength. Durability characteristics of recycled aggregate concrete were studied with Rapid chloride penetration test (as per ASTMC1202), sorptivity test and acid test to assess resistance against chloride ion penetration, capillary suction and chemical attack respectively. Mix design for 50 MPa gives around 35 MPa after replacing natural aggregate with recycled aggregate in concrete mix and the chloride penetration range also lies in moderate limit. Hence it is understood from the results that replacement of NA with RA is very much possible and will be ecofriendly.