• Title/Summary/Keyword: aggregate resources

Search Result 559, Processing Time 0.03 seconds

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF

Strength Properties of Non-cement Matrix by Using Recycled Aggregates and Sludge from Ready-Mixed Concrete (레미콘의 슬러지 고형분과 회수골재를 사용한 무시멘트 경화체의 강도특성)

  • Ryu, Dong-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.477-482
    • /
    • 2016
  • This study investigates the expressions characteristics of compression strength depending on the condition of fresh concrete and cured concrete by producing Non-cement mortar and concrete only with solidified sludge in the dehydrated cake form, recycled concrete and premixed materials(BS, FA) in order to actively use remicon recycling water as resources, rather than as construction waste material. After treating wastewater of pH 12.5 or more with alkali activator and after promoting BS hydration reaction, the amount of BS inflow was found to be increased and compression strength was increased accordingly: these results coincide with the analysis results of TG-DTA and SEM.

Preparation of shotcrete coarse aggregate with low grade clay and coal ash (저급 점토와 석탄회를 이용한 숏크리트용 골재의 제조)

  • Kim, Kyung-Nam;Jung, Hee-Su;Park, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2010
  • In this study, the artificial coarse aggregate was manufactured by using coal ash and low grade clay. The characteristics of a coal ash-clay system were investigated using XRD, XRF, TG-DTA, SEM and Dilatometer with various coal ash contents. The chemical compositions are the fly ash, bottom ash and clay, $Al_2O_3$ are 28.5 wt%, 32.4 wt% and 18.1 wt%, and $SiO_2$ are 33.0 wt%, 53.7 wt% and 68.4 wt% in weight ratio, respectively. The shrinkage of specimens started at around $850^{\circ}C$ and changed little up to $1100^{\circ}C$, but increased markedly at above $1100^{\circ}C$. The shrinkage rate is strongly related to the decarbonization amount of coal ash. At the sintering temperature $1150^{\circ}C$, it was found that quartz, mullite, anorthite and albite phase exist in all specimens. It was found that bottom-clay system specimen sintered at $1150^{\circ}C$ had a good compressive strength of 87.5 kg/$cm^2$, and the compressive strength of bottom-clay specimen was higher than that of fly-clay system specimen. The reusability of coal ash as a raw material in the process of shotcrete resources such as artifical coarse aggregate is highly expected.

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Conservation Values of Major Resources in the Korean DMZ and Its Vicinity (DMZ일원 주요 자원의 보전에 대한 지불의사액 추정 연구: 응답자의 지리적 이질성에 대한 검증)

  • Choi, Andy S.;Park, Eun-Jin
    • Environmental and Resource Economics Review
    • /
    • v.19 no.2
    • /
    • pp.303-340
    • /
    • 2010
  • The Demilitarized Zone (DMZ) of Korea has been crucial not only for its buffering role between two Koreas, but also for the conservation of various resources across its premises. The objectives of this study is threefold. The first objective is to identify major resources that determine economic values of the DMZ and its vicinity. The second and third objectives are respectively to estimate conservation values of those resources using Choice Modeling and to test whether or not respondents living in different geographical locations have significantly different willingness to pay for the conservation. In a very conservative estimation, results showed that Korean adults have about 55,000 Won on average for conserving five major resources : the DMZ area, endangered species, cultural heritage items and sites, the Truce Village, and villages in the Civilian Conroal Zone. This equals the aggregate economic value of about 2,07 trillion Won. Moreover, significant regional differences were found in public benefits from conserving these major resources.

  • PDF

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Distortional buckling performance of cold-formed steel lightweight concrete composite columns

  • Yanchun Li;Aihong Han;Ruibo Li;Jihao Chen;Yanfen Xie;Jiaojiao Chen
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.675-688
    • /
    • 2024
  • Cold-formed steel (CFS) is prone to buckling failure under loading. Lightweight concrete (LC) made of lightweight aggregate has light weight and excellent thermal insulation performance. However, concrete is brittle in nature which is why different materials have been used to improve this inherent behavior of concrete. The distortional buckling (DB) performance of cold-formed steel-lightweight concrete (CFS-LC) composite columns was investigated in this paper. Firstly, the compressive strength test of foam concrete (FC) and ceramsite concrete (CC) was carried out. The performance of the CFS-LC members was investigated. The test results indicated that the concrete-filled can effectively control the DB of the members. Secondly, finite element (FE) models of each test specimen were developed and validated with the experimental tests followed by extensive parametric studies using numerical analysis based on the validated FE models. The results show that the thickness of the steel and the strength of the concrete-filled were the main factors on the DB and bearing capacity of the members. Finally, the bearing capacity of the test specimens was calculated by using current codes. The results showed that the design results of the AIJ-1997 specification were closer to the experimental and FE values, while other results of specifications were conservative.

Effects of the Pumping Rate on the Salt Concentration (지하수의 염분농도 변화에 미치는 양수의 영향)

  • Park, Jae-Sung;Lee, Ho-Jin;Kim, Kyoung-Ho;Yun, Young-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1895-1899
    • /
    • 2006
  • Seawater intrusion phenomenons of coastal area happen by natural or artificial factor. For example, density difference of seawater and fresh water, surface of the water change by tidal current, pumping, aggregate picking from mouth of a river, large scale reclamation in water area business etc. This research analyzed effect that groundwater TDS changed by pumping.As a result, it was expose that TDS density increases by sudden inflow of seawater when do pumping up more than $200m^3/day$. Finally, We are expected to prevent calamity by seawater intrusion in coastal area through this study and propose optimum pumping amount to use groundwater safety.

  • PDF

A Study on the Improvement of Property of Concrete using Copper Slag and Fly ash (동슬래그 및 플라이애쉬를 혼합하여 제작한 콘크리트의 성능 향상 연구)

  • Kim, Chun Ho;Lee, Won Goo;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Generally, when using copper slag mixed into the concrete, due to higher weight of copper slag, a reduction in the compressive strength and durability of the hardened concrete to increased bleeding is caused. In this study, hence copper slag, a kind of by-product was used as an alternative to the fine aggregate, it was carried out in combination with the use of fly ash in eliminating disadvantage and recycling aspects. As a result of this study, the mixing of fly ash is decreased in the 50% of bleeding, 5% of drying shrinkage, 30% of carbonation test and improvement of 10% of compressive strength than that of copper slag only at most.

Characteristic of retentive concrete using bottom ash and metakaolin (바텀애시 및 메타카올린을 사용(使用)한 보수성(保水性)콘크리트의 특성(特性))

  • Bae, Ju-Seong;Jeong, Houi-Gab;Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2011
  • This study was to draw a retentive concrete pavement that can reduce urban heat island which has become intensified according to the increase of buildings and paved roads. It used bottom ash, an industrial by-product that has retentive effect, as a replacement of fine aggregate. Meanwhile, in order to improve the decline of dynamic performance caused by bottom ash replacement, we manufactured specimen that metakaolin was added and we studied the characteristics of durable, ecological and retentive concrete through various experiments.