• Title/Summary/Keyword: aggregate data

Search Result 672, Processing Time 0.026 seconds

A Study on the Application of Early Estimation Method and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(I)-Part 1 : Mechanical Properties and Early Estimation of Strength- (재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(I) -제 1 보: 역학적 성질 및 강도 조기추정-)

  • 김기철;윤기원;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.26-29
    • /
    • 1993
  • To analyze the using of recycled aggregate on concrete as the substitude aggregate is important problem for the reuse of waste matter and prevention of environmental pollution. Therefore, this study is designed for investigating and analyzing the mechanical properties and early estimational properties of strength on concrete using aggregate of the waste concrete. And is aimed to provide the fundamental data for recycled aggregate.

  • PDF

A Study on the Application of Early Estimation Method and Non-Destructive Testing for the Strength of Recycled Aggregate Concrete(II) (재생골재 콘크리트의 강도 조기추정 및 비파괴실험 적용성에 관한 연구(II)-제 1보 : 역학적 성질 및 강도 조기추정)

  • 최청각;윤기원;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.57-60
    • /
    • 1993
  • To analyze the using of recycled aggregate on concrete as the substitude aggregate is important problem for the reuse of waste matter and prevention of environmental pollution. Therefore, this study is designed for investigation and analyzing the mechanical properties and early estimational factors of strength on concrete sing aggregate of the waste concrete. And is aimed to provide the fundamental data for recycled aggregate.

  • PDF

Performance Evaluation of Structural Concrete Using Recycled Aggregate (재생골재를 사용한 구조용 콘크리트의 성능평가)

  • Park, Hee-Gon;Bae, Yeoun-Ki;Lee, Jae-Sam;Lee, Yong-Do;Lim, Nam-Ki;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, recycled aggregate was used very limitedly in low value-added areas such as the base layer of roads. However, in response to the shortage of natural aggregate, high consciousness of resource saving and changed idea on environment, the quality of recycled aggregate has been improved considerably, and the percentage of recycled construction waste is increasing every year compared to simple landfill or incineration. Recently the Act on the Promotion of Construction Waste Recycling was enacted on December 2003 for the efficient use of recycled aggregate, and the Standards for the Quality of Recycled Aggregate for Concrete (Proposal) were announced in order to use and manage recycled aggregate according to quality. According to the Standards for the Quality of Recycled Aggregate for Concrete (Proposal), it is recommended to substitute recycled coarse aggregate and fine aggregate below 30% each. However, compared to the trend of recycling, the recycling rate of aggregate is still quite low. It is because of low performance of recycled aggregate, users' lack of understanding, etc. These problems basically come from the decrease of strength of recycled concrete resulting from the use of recycled aggregate, and recycled aggregate is still considered not reliable because there have been not many cases of actual application. If the basic problem of strength decrease is solved and data on recycled aggregate is provided through actual field placing, we may maximize the use of recycled aggregate. Thus, in order to maximize the use of recycled aggregate that satisfy the recycled aggregate quality standards, the present study made a mock-up similar to real structures, evaluated its performance and examined the field applicability of recycled aggregate concrete.

A Study on the Early-Age Strength Properties of Recycled Fine Aggregate Mortar Using Blast Furnace Slag (고로슬래그를 사용한 재생 잔골재 모르타르의 초기강도 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. Since hydroxide ion concentration of calcium hydroxide(Ca(OH)2) ion erupted from recycled fine aggregate newly produced is over 12. In recycled fine aggregate mortar transposing and using BFS powder, calcium hydroxide(Ca(OH)2) erupted from recycled fine aggregate played a role of stimulus from the day 3 and manifestation of compressive strength was slowly increased with mortar using natural fine aggregate and showed considerable increase from the day 7.

  • PDF

Review of Changes in Mechanical Properties of Concrete According to Recycled Coarse Aggregate Replacement Rate_Case Study (순환 굵은 골재 치환율에 따른 콘크리트의 역학적 특성 변화 검토_사례 연구)

  • Young-Jin Nam;Tae-Hyung Kim;Won-Chang Kim;Tae-Gyu Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.178-187
    • /
    • 2024
  • In this study, it was determined that it was necessary to consider the replacement rate when applying recycled coarse aggregate to concrete, so data on existing research trends and results were collected and the mechanical properties of concrete according to the replacement rate of recycled coarse aggregate were analyzed. In collecting data on recycled coarse aggregate, data without processes such as compressive strength and removal of residual mortar attached to recycled coarse aggregate were collected among the concrete measurement items. In the case of concrete with 50 % and 100 % replacement of recycled coarse aggregate, it was confirmed that the mechanical properties were lower or higher than ordinary concrete by -36.0 ~ 9.9 % and -40.0 ~ 10.4 %, respectively, on average. Accordingly, it is judged that additional water should be mixed in consideration of the absorption rate when mixing, and the replacement rate of recycled coarse aggregate, which has mechanical properties of 80 % or more compared to ordinary concrete, should be less than 50 %.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

The Evaluation Model of Aggregate Distribution for Lightweight Concrete Using Image Analysis Method (이미지 분석을 이용한 경량골재 콘크리트의 골재분포 판정기법 개발)

  • Ji, Suk-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, the cross-sectional image has been acquired to evaluate the aggregate distribution affecting quality of lightweight aggregate concrete, and through the binarization method, the study is to calculate the aggregate area of upper and lower sections to develop the method to assess the aggregate distribution of concrete. The acquisition of cross-section image of concrete for the above was available from the cross-sectional photography of cleavage tension of a normal test specimen, and an easily accessible and convenient image analysis software was used for image analysis. As a result, through such image analyses, the proportion of aggregate distribution of upper and lower sections of the test specien could be calculated, and the proportion of aggregate area U/L value of the upper and lower regions of concrete cross-section was calculated, revealing that it could be used as the comprehensive index of aggregate distribution. Moreover, through such method, relatively easy image acquisition methods and analytic methods have been proposed, and this indicated that the development of modeling to assess aggregate distribution quantitatively is available. Based on these methods, it is expected that the extraction of fundamental data to reconsider the connectivity with processes in concrete will be available through quality assessment of quantitative concrete.

Evaluation of Compressive Strength of Concrete Using Aggregate of Basalt by Schmidt Hammer Testing (현무암골재를 사용한 콘크리트의 슈미트 햄머법 비파괴 시험에 의한 강도 평가)

  • 김상우;표대수;홍상희;이백수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.257-262
    • /
    • 2001
  • The objective of this study is to compare compressive strength and rebound number of Schmidt hammer of concrete using basalt aggregate to that using granite aggregate. And is to provide the reference data on the standardization of nondestructive test of concrete. According to test results, compressive strength of concrete using basalt aggregate is highly estimated under the same rebound number compared to that using granite aggregate about 5~15%. It is urgently that newly suggested estimation formula of compressive strength using basalt aggregate must be prescribed because estimation formula of compressive strength of concrete using basalt aggregates overestimates the strength compared to that using granite aggregate.

  • PDF

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

The Possibility of Alkali-Aggregate Reaction of High Strength Concrete by Concrete Bar Test (콘크리트 시험체 시험법을 통한 고강도 콘크리트의 알칼리골재 반응성)

  • 권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.137-140
    • /
    • 1996
  • The deterioration of concrete due to alkali-aggregate reaction is dependent on the total alkali content per unit volume of concrete. It was reported that the expansion of high alkali concrete with the reactive aggregate increased easily due to high alkali of concrete with the reactive aggregate increased easily. And it has been confirmed that the addition of pozzolanic material prevents the concrete with reactive aggregate from deterioration caused by alkali-aggregate reaction. It is the aim of this study to provide the fundamental data on the possibility of alkali-aggregate reaction of high strength concrete and its preventing and repair technic.

  • PDF