• Title/Summary/Keyword: agglomerates

Search Result 125, Processing Time 0.15 seconds

Electrical Mobility Behavior of Nanoparticle Fractal Agglomerates in the Slip Regime (미끄럼 영역에 있는 나노입자 프랙탈 응집체의 전기이동도 거동 특성)

  • Shin, Weon Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.211-216
    • /
    • 2013
  • For diffusion limited cluster agglomerates the ratio of the mobility radius to the radius of gyration $R_m/R_g$ vs. N and the ratio of the mobility radius to the radius of primary particle $R_m$/a are determined using experimental data obtained with DMA-APM and tandem DMA over a range of Knudsen numbers extending into the transition region where there is a lack of data. It was found that in slip regime with the number of primary particles between 100 and 400, datapoints are found to be between the two asymptotic lines for the continuum and free molecular regimes as those datapoints are plotted in both $R_m/R_g$ vs. N and $R_m$/a vs. N.

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

Analysis of nano-cluster formation in the PECVD process

  • Yun, Yongsup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.144-148
    • /
    • 2013
  • In this paper, the ultra water-repellent thin films were prepared by RF PECVD. On the basis of surface morphology, chemical bonding states and plasma diagnostics, a formation model of clusters for the ultra water-repellent films was discussed from considerations of formation process and laser scattering results. Moreover, using laser scattering method, the relative change of quantity of nano-clusters or size of agglomerates could be confirmed. From the results, the films were deposited with nano-clusters and those of agglomerates, which formed in organosilicon plasma, and formation of agglomerates were depended on the deposition time.

Agglomeration of Toner Particles with Fatty Alcohol and Their Removal by Screening (고급알코올을 이용한 토너의 응집 및 스크리닝을 통한 제거 효과)

  • 허용성;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.24-32
    • /
    • 2004
  • Toner used in xerographic printing process is hydrophobic powder with low surface energy. The toner ink film fused on paper surface can be efficiently detached from a fiber surface during pulping, but it does not fragment again into fine toner particles. Ink agglomerates that result have too large particle size to be deinked by flotation. The purpose of this study is to enhance toner agglomeration using 1-octadecanol for improving the toner removal by screening. The effect of pH, pulping temperature, and 1-octadecanol on toner agglomeration and removal by screening was investigated using image analysis methods. Results showed that the size of toner agglomerates increased substantially when pulping was carried out at high temperature under acidic condition. When toner agglomerates showed spherical shape, the particle removal efficiency of screening was improved.

Development of spherical crystallization technique and its application to pharmaceutical systems

  • Kawashima, Yoshiaki
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 1984
  • A novel agglomeration technique, termed "Spherical Crystallization Process", which can transform directly the fine crystals produced in the crystallization or the reaction process into a spherical shape was developed. By this technique, needle like crystals such as salicylic acid were transformed into free flowing and directly compressible agglomerates. Sphericaly agglomerated aminophyline crystals were obtained directly from the reaction system, which could reduce the preparation processes, e. g. synthesis, crystallization and agglomeration, into only one step. Sodium theophyline monohydrate agglomerates were prepared by salting out, the rate process of which was described by a first order kinetics. Agglomerated crystals of ndw complex of indo-methacin-mepirizole were prepare with this technique; an improved therapeutic effect of the resultant crystals was expected. expected.

  • PDF

Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process (DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가)

  • Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

Effect of Difference in Mixing Methods of Zirconia on Mechanical Properties of ZTA (ZrO2의 혼합방법 차이가 ZTA의 기계적 물성에 미치는 영향)

  • Sohn, Jeongho
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.625-630
    • /
    • 2013
  • In this study, intermediate-mixed powders were prepared by loading zirconia powders initially in a ball-mill jar and loading alumina powders afterward; the initial-mixed powders were produced by loading zirconia and alumina powders together in the ball-mill jar. The effect of such differences in mixing method on the mechanical properties was investigated. In intermediate-mixed powders, the volume fraction of large particles slightly increased and, simultaneously, zirconia particles formed agglomerates that, due to early ball-mill loading of the zirconia powders only, were more dispersed than were the initial-mixed powders. For the intermediate-mixed powders, zirconia agglomerates were destroyed more quickly than were initial-mixed powders, so the number of dispersed zirconia particles rose and the inhibitory effect of densification due to the addition of a second phase was more obvious. In the microstructure of intermediate-mixed powders, zirconia grains were homogeneously dispersed and grain growth by coalescence was found to occur with increasing sintering temperature. For the initial-mixed powders, large zirconia grains formed by localized early-densification on the inside contacts of some zirconia agglomerates were observed in the early stages of sintering. The intermediate-mixed powders had slightly lower hardness values as a whole but higher fracture toughness compared to that of the initial-mixed powders.

Consolidation of Iron Nanopowder by Nanopowder-Agglomerate Sintering at Elevated Temperature

  • Lee, Jai-Sung;Yun, Joon-Chul;Choi, Joon-Phil;Lee, Geon-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.