• Title/Summary/Keyword: affinity membrane

Search Result 214, Processing Time 0.023 seconds

대두 사포닌의 활성에 관한 기전 연구

  • 성미경
    • Journal of Nutrition and Health
    • /
    • v.28 no.10
    • /
    • pp.1022-1030
    • /
    • 1995
  • Saponins are glycosidic compounds present in many plant foods. They are characterized by their ability to lyse cell membranes due to their surface-active properties. Saponins are believed to interact primarily with cholesterol in the cell membrane. In this study, the interaction of soybean(SS) with cell membrane was investigated using erythrocytes as a model. Mechanisms of interaction was also investigated by measuring their binding capacity with different membrane lipid fractions. Throughout the study, gypsophilla saponin(GS) and quillaja saponin(QS) were used to evaluate the membranolytic activity of soybean saponins. All saponins released hemoglobin in a concentration-dependent manner. SS induced 40% hemolysis at the concentration of 400 ppm, however there was no increase in hemoglobin release above 400ppm concentration. 5ppm of GS and 8 ppm of QS hemolyzed 100% of erythrocytes. Isolation of SS fractions by thin layer chromatography revealed that only one non-polar saponin possesses strong hemolytic activity. When saponins were incubated decreased the release of cholesterol. When the hemolytic activity of saponins was measured in the presence of other major membrane lipid components, sphingomyelin significantly reduced the hemolytic activity of SS, while cholesterol reduced the activity of QS. GS showed high affinity to other component(s) in the incubation media as well as lipids. These results suggest that the membranolytic activity of saponins are related to their specific chemical structure, which determines the interaction behavior between saponins and different membrane components, and thereby influence the biological activity.

  • PDF

Current Research Trends in Water Treatment Membranes Based on Nano Materials and Nano Technologies (나노 기술을 이용한 수처리 분리막 소재의 최근 연구동향)

  • Lee, Hee Dae;Cho, Young Hoon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 2013
  • Nano materials having large surface area, uniform dimensions or pores can be utilized in various membrane applications. Recently, many studies have been focused on the application of nano materials and nano technologies in membrane applications by the help of the discovery and development of nano technologies. in terms of mass transport channels or functional modification. However, there have been several technological limitations for commercialization. Nano materials and nano technologies can improve 1) permeability, selectivity, 2) mechanical, chemical, thermal stability or fouling tolerance of conventional membranes and even 3) introduce new functionalities such as specific affinity and reactivity.

Dehydration of Alcohol Solutions Through Crosslinked Chitosan Composite Membranes II. Dehydration of Ethanol Solution Through Modified Chitosan Composite Membranes (가교키토산 복합막을 통한 알콜수용액의 탈수 II. 변성 키토산 복합막을 통한 에탄올의 탈수)

  • 이영무;남상용;유제강;류경옥
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 1996
  • To improve pervaporation performance of water/ethanol mixtures, chitosan/poly(vinyl alcohol) blended and phosphorylated chitosan composite membranes were prepared. Chitosan/poly(vinyl alcohol) blends were prepared with various blend ratios and then crosslinked with glutaraldehyde by two methods. With increasing crosslinking agent content and crosslinking times separation factor increased and permeate flux decreased. Separation factor of the membrane which contains glutaraldehyde as a crosslinking agent was higher than that of the membrane surface crosslinked. Phosphorylated chitosan was prepared with various reaction times and composite membrane was prepared. As reaction times increased, the separation factor increased with high affinity for water.

  • PDF

Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on myo- and scyllo-Inositol Scaffolds: Stereochemistry Dependency

  • Ghosh, Subhash C.;Kim, Bo-Ram;Im, Jung-Kyun;Lee, Woo-Sirl;Im, Chang-Nim;Chang, Young-Tae;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3623-3631
    • /
    • 2010
  • We prepared several novel molecular transporters built on myo- and scyllo-inositol scaffolds with variations in the number of guanidine residues, linker chain lengths and patterns. Some of these transporters were found to localize in mitochondria, and the mitochondrial affinity seems to be substantially related to the scaffold stereochemistry.

Permeation Flux of Ester Compounds through Hydrophobic Membrane by Pervaporation (투과증발에 의한 Ester 성분의 소수성막의 투과플럭스)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.197-204
    • /
    • 2016
  • The objective of this work was to investigate the performance of pervaporation process for recovery of ester compounds from model aqueous solutions and how the fluxes of esters and water were affected by changes in feed concentration and temperature. The flux of ethyl acetate (EA), propyl acetate (PA), ethyl propionate (EP), butyl acetate (BA), and ethyl butyrate (EB) increased with an increase in feed concentration from 0.15 wt% to 0.60 wt%, and increased with temperature change from $30^{\circ}C$ to $50^{\circ}C$. The flux of esters (EA, PA, EP, BA, and EB) was in order of (EA) < (PA, EP) < (BA, EB). This result meant that the flux strongly depended on affinity between esters and membrane surface; EA is the least hydrophobic because it has one hydrophobic function group ($-CH_2-$), (PA, EP) have two ($-CH_2-$), and (BA, EB) are the most hydrophobic because these have three ($-CH_2-$). As well as such an influence of hydrophobicity of ester molecules on ester flux, the influence of hydrophobicity of membrane surface on ester flux needs further investigation. With increase in temperature, water flux of aqueous EA, PA, EP, BA, and EB solution increased. However, water flux of aqueous ester solutions did not change appreciably with increase in concentration. This experimental results may be used as fundamental data for pervaporation (PV) to improve the aroma recovery process as an alternative to thermal evaporation and distillation processes.

SYNTHESIS AND CHARACTERIZATION OF THE POLYCATIONS FOR THE PREPAEATION OF POLYION COMPLEX MEMBRANS

  • Jegal, J.G.;park, Y.I.;Kim, J.H.;Lee, K.H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.58-58
    • /
    • 1993
  • Pervaporation has become important as a method to separate liquid mixtures, sepecially azeotropic and close boiling-point mixtures. Especially, water-alcohol separations have been carried out a lot because of the practical interests in the industries. However, outstanding membranes with high selectivity and high permeability have not been available in common use yet. In order to separate selectively out the water mixed with alcohols with an aim of the purification of the alcohols, a membrane has tO have excellent affinity to water. Among the hydrophilic polymers, polyacrylic acid and poly(vinyl alcohol) are used widely. In recent years, ionomers and polyion complexes, better hydrophitic materials, start to be used. The polyion complex membranes, consisting of polyacrylic acid (PAA) and polycation, showed excellent permeation rates and selectivities. It was known that among the polycations, ioneries, which have quaternary ammonium groups in the backbone chain, were more effective in giving membranes of higher permselectivities. On this base, syntheses and characterizations of the polycations, with different chemical structures from the published ones, for the polyion complex membrane formation were studied in this paper.

  • PDF

Removal of VOCs from Water by Vapor Permeation through PU/PDMS Membrane (PU/PDMS 막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • 임지원;남상용;김영진;천세원
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2004
  • PU/PDMS(Poly urethane/poly(dimethylsiloxane ) membranes were prepared to enhance chemical resistance over VOCs from 4,4'-diphenylmethane diisocyanate (MDI), poly(dimethylsiloxane) (PDHS). Swelling characteristics and vapor permeation performance of toluene, 1,2-dichloroethane, hexane through PU/PDMS membrane with various feed VOCs concentration were investigated. Swelling ratio of VOCs showed tendency of Toluene > 1,2-dichloroethane > hexane. Fiux of toluene and 1,2-dichloroethane increased with increasing fled concentration while the flux of hexane maintained with increasing feed. VOCs concentration in permeate maintained 50 wt% oi concentration due to high affinity of PU/PDHS membranes to VOCs.

Effect of Ginseng Saponin, Gypsophila Saponin, and Detergents on Volume Changes and Fragility of Red Blood Cells (인삼(人蔘) Saponin, 은시호(銀柴胡) Saponin 및 계면활성제(界面活性劑)가 적혈구(赤血球)의 용적변화(容積變化) 및 Fragility에 미치는 영향(影響))

  • Lee, Shin-Woong;Lee, Jeung-Soo;Lee, Soo-Kun;Ok, Chang-Kun;Kim, Young-Hie
    • YAKHAK HOEJI
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 1989
  • The effects of Gypsophila saponin, sodium dodecylsulfate (SDS) and Triton X-100 on volume changes and fragility of red blood cells were compared to ginseng saponin to elucidate whether there are any difference in their action on membrane lipid. Cell volume was decreased to about 38% in 1M NaCl and increased to about 20% in 1/10M NaCl. Hematocrit value was decreased by Gypsophila saponin, SDS, and Triton X-100 which caused hemolysis in isotonic NaCl solution. These detergents also inhibited increase of cell volume and accelerated hemolysis in hypotonic solution. However, ginseng saponin did not influence to osmotic volume changes and hemolysis of red blood cells. These results suggest that the disruptive effect of plant saponin on membrane barriers induced by removing membrane lipid is different from their source and ginseng saponin has very low affinity to membrane lipid.

  • PDF

Conjugates of Enkephalin Analogs: Synthesis and Discrimination of μ and δ Opioid Receptors Based on Membrane Compartment Concept

  • Hong, Nam-Joo;Jin, Dong-Hoon;Hong, Eun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.599-607
    • /
    • 2009
  • A series of conjugated cyclic and linear enkephalin analogs, Tyr-c[D-A2bu-Gly-Phe-Asp(NH-X)], where X = methyl, stearyl or$ PEG_350$, and Tyr-D-Ala-Gly-Phe-Cys(S-X), where X = methyl, octyl, or farnesyl, were synthesized in solution to investigate the receptor selectivity of opioids based on Schwyzer's membrane compartment $concepts.^{5,6}$ Cyclizations of the target compounds were achieved in high yields (> 60%) employing BOP, $NaHCO_3$ in DMF despite the steric hindrance of the bulky pendant groups. In the binding assay, the hydrophobic fatty acyl conjugates retained $\mu$-receptor selectivity. The unsaturated farnesyl conjugate exhibited the increased binding affinity than the saturated stearyl conjugate for both $\mu$-and $\delta$-opioid receptors. The PEG conjugates displayed the $\delta$-receptor selectivity. The low molecular weight $PEG_350$ conjugate exhibited the increase selectivity than the high molecular weight $PEG_5000$ conjugate to the $\delta$-receptor. The results of this study support the membrane compartment concepts.

A Study of Alginic acid Membrane for the Separation of Water-Alcohol Mixtures (물-알코올 혼합물의 분리를 위한 알긴산막에 관한 연구)

  • 박상우;오재완정봉우김춘영
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.200-208
    • /
    • 1993
  • As a separation membrane for water-ethanol mixtures, alginic acid has been used which is hydrophilic polysaccharide and has excellent bonding capacity with divalent metal ions. Pervaporation characteristics of the alginic acid membrane were examined. The membrane was crosslinked with metal ions for the improvement of mechanical strength and chemical affinity. And its pervaporation characteristics were investigated. The first group(I A) metal complexed membrane cannot be used because of their brittleness and excessive swelling in low concentrations of ethanol solution. But the permeation characteristics of other metal complexed membrane were more improved than that of the alginic acid membrane because of their contraction of the membrane and hydrophilic property of metal ion.

  • PDF