• Title/Summary/Keyword: aerosol extinction coefficient

Search Result 38, Processing Time 0.018 seconds

Aerosol Vertical Distribution Measured by LIDARs in Baengnyeongdo, Munsan, and Gunsan during 10~11 May 2010 (백령도, 문산, 군산의 라이다로 측정한 에어로졸 연직분포 -2010년 5월 10~11일 황사를 중심으로-)

  • Lee, Hae-Jung;Kim, Jeong Eun;Chun, Youngsin
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.519-526
    • /
    • 2013
  • This study aims to analyze the vertical distribution of Asian dust measured by LIDARs at three weather stations in Baengnyeongdo (BND), Munsan (MS), and Gunsan (GS) during 10~11 May 2010, and thereby investigate their effectiveness. Asian dust passed through from central to south-western part of Korea. Although dust particles were detected over the surface in MS and GS, LIDAR data showed that the Asian dust with non-spherical particles was observed in all of the three regions. It seems that the naked-eye observation could not detect dust over the surface of BND due to the temperature inversion below a height of 0.45 km. During the Asian dust events, the duration time of dust presented 9.5 hr (BND), 19.5 hr (MS), and 24.5 hr (GS), respectively with the longest time in GS, whereas dust altitudes ranged from 0.4 to 1.3 km (BND), 0.1 to 2.8 km and 4.1 to 4.2 km (MS), and 0.2 to 2.0 km (GS), respectively, while showing the highest altitude in MS. Aerosol optical thickness (AOT) retrieved by LIDAR and skyradiometer (SR), located close to the LIDAR sites, was compared. MS (LIDAR) and Seoul (SR) attained the AOT of 0.64 and 0.50, and GS (LIDAR) and Gongju (SR) attained the AOT of 0.38 and 0.54, respectively. As SR-derived angstrom exponents (AE) during the time period determined as Asian dust by LIDAR data were 0.17 in Seoul (near MS) and 0.30 in Gongju (near GS), it can be said that the characteristics of dust particles were appeared. During the study period, depolarization ratio could serve as a useful indicator to determine dust aerosol. But, it still seems essential to conduct further investigation with longer period of data to better describe the discrepancy of AOT between LIDARs and SR.

Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery (천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.

Estimation of surface visibility using MODIS AOD (MODIS AOD를 이용한 지상 시정 산출)

  • Park, Jun-Young;Kwon, Tae-Yong;Lee, Jae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2017
  • Thisstudy presentsthe method for deriving surface visibility from satellite retrieved AOD. To do thisthe height of aerosol distribution isrequired. This distribution would be in thisstudy represented by the two heights; if there is a discrete atmospheric layer, which is physically separated from the above layer, the upper height of the layer is assumed as Aerosol Layer Height(ALH). In this case there is clear minimum in the Relative Humanity vertical distribution. Otherwise PBLH(Planetary Boundary Layer Height) is used. These heights are obtained from the forecast data of Regional Data Assimilation and Prediction System(RDAPS). The surface visibility is estimated from MODIS AOD and ALH/PBLH, using Koschmieder's Law for ALH and the empirical relations for PBLH. The estimated visibility are evaluated from the visibility measurements of 9 eve-measurement stations and 17 PWD22 stations for the spring of 2015 and 2016. Verification of the estimated visibility shows that there are considerable differencesin statistical verification value depending on stations, years, morning(Terra)/afternoon(Aqua). The better results are shown in the midwest part of korean peninsula for Terra of 2016. The results are summarized as; correlation coefficients of higher than 0.65, for low visibility RMSE of 3.62 km and ME of 2.29 km or less, POD of higher than 0.65 and FAR of 0.5 or less. Verification results were better with increase in the number of low-visibility data.

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations (라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출)

  • Noh, Young-Min;Lee, Han-Lim;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.

Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System (다파장 라만 라이다 시스템을 이용한 고도별 황사의 단산란 알베도 산출)

  • Noh, Youngmin;Lee, Chulkyu;Kim, Kwanchul;Shin, Sungkyun;Shin, Dongho;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • A new approach to retrieve the single-scattering albedo (SSA) of Asian dust plume, mixed with pollution particles, using multi-wavelength Raman lidar system was suggested in this study. Asian dust plume was separated as dust and non-dust particle (i.e. spherical particle) by the particle depolarization ratio at 532 nm. The vertical profiles of optical properties (the particle extinction coefficient at 355 and 532 nm and backscatter coefficient at 355, 532 and 1064 nm) for non-dust particle were used as input parameter for the inversion algorithm. The inversion algorithm provides the vertical distribution of microphysical properties of non-dust particle only so that the estimation of the SSA for the Asian dust in mixing state was suggested in this study. In order to estimate the SSA for the mixed Asian dust, we combined the SSA of non-dust particles retrieved by the inversion algorithms with assumed the SSA of 0.96 at 532 nm for dust. The retrieved SSA of Asian dust plume by lidar data was compared with the Aerosol Robotics Network (AERONET) retrieved values and showed good agreement.

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

Instantaneous Monitoring of Pollen Distribution in the Atmosphere by Surface-based Lidar (지상 라이다를 이용한 대기중 꽃가루 분포 실시간 모니터링)

  • Noh, Young-Min;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Lee, Han-Lim;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The diurnal variation in pollen vertical distributions in the atmosphere was observed by a surface-based lidar remote sensing technique. Aerosol extinction coefficient and depolarization ratio at 532 nm were obtained from lidar measurements in spring ($4^{th}$ May - $2^{nd}$ June) 2009 at Gwangju Institute of Science & Technology (GIST) located in Gwangju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$). Unusual variations of depolarization ratio were observed for six days from $4^{th}$ to $9^{th}$ May. Depolarization ratios varied from 0.08 to 0.14 were detected at the low altitude in the morning. The altitude with those high depolarization ratios was increased up to 1.5 - 2.0 km at the time interval between 12:00 and 14:00 LT and then decreased. The temporal variations in high values of depolarization ratios from lidar measurements show good agreement in patterns with the sampled pollen concentrations measured using the Burkard trap sampler. This study demonstrates that the pollen distribution data obtained by lidar measurements can be a useful tool for investigating spatial and temporal characteristic of pollen particles.