• Title/Summary/Keyword: aerobic reaction

Search Result 143, Processing Time 0.029 seconds

토착미 생물을 이용한 TNT(2,4,6-Trinitrotoluene)의 생물학적분해

  • 배범한;유경민;장윤영;이인숙
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.235-238
    • /
    • 2002
  • Microorganisms were isolated from military shooting site. Aerobic batch reactor and resting cell condition experiments were carried out using isolated microorganisms. Experiments were examined at room temperature on shaker and ten-roll mixer. During 10 days of reaction time, TNT was degraded 15.51 ~ 22.47 mg/L from initial concentration(31$\pm$1 mg/L) by aerobic batch reactor. Aerobic resting cell condition experiments were carried out ill phosphate buffer with 58($\pm$1) mg/L TNT at pH of 6.0($\pm$0.2). TNT was degraded 67.8% of initial concentration. The mai or component was found 4-ADNT(4-Aminodinitrotoluene).

  • PDF

Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구)

  • Hyun-Gu Kim;Dae-Hee Ahn
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process (무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석)

  • Chae, Soo Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).

A Study on Variation of Colony Forming Units of Heterotrophic Bacteria by Input Ratios of Bulking Materials in Aerobic Composting of Food Wastes (음식물류폐기물의 호기성 퇴비화에 있어서 팽화재 투입비에 따른 타가영양세균의 균락형성단위의 변화에 관한 연구)

  • Park, Seok-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.353-358
    • /
    • 2006
  • This study was performed to evaluate the effects of input ratios of bulking material in aerobic composting of food wastes on variation of colony forming units of heterotrophic bacteria. Wood chips were used as a bulking material. Volume ratios of food wastes to wood chips in reactor of Control, WC-1 and WC-2 were 10/0, 10/5 and 10/10, respectively. Reactors were operated for 24 days with 1hour stirring by 1rpm and 2 hours of the forced aeration per day. WC-2 reached high temperature range faster than WC-1, and the maximum temperature of WC-2 was higher than that of WC-1. This means that the reaction velocity of composting of WC-2 was faster than that of WC-1. Judging from the profile of pH changes, composting of WC-1 proceeded slowly and continuously. Composting of WC-2 proceeded rapidly in the former half reaction period, and kept steady state of high pH in the latter half reaction period. Namely, composting of WC-2 was nearly completed in the former half reaction period. In the case of WC-1 and WC-2. the maximum temperature was followed by the rapid pH increase in 2-3 days, and this was followed by the maximum Colony Forming Units(CFU) in 3 days. But, these three items of WC-2 always appeared faster and higher than those of WC-1.

Comparison of Effects of Chaff and Sawdust on Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화에 있어서 왕겨와 톱밥의 영향에 관한 비교 연구)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.28-34
    • /
    • 2003
  • This study was performed to compare the effects of chaff and sawdust as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-l, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Volume ratios of food wastes to sawdust in reactor of Control, Sd-l, Sd-2, Sd-3 and Sd-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster pH increase. In the volume ratio of 4:3 and 4:4, pH increased faster in food-chaff mixtures than in food-sawdust mixtures. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster steady state in the weight reduction rate and the volume reduction rate. The weight reduction rates of chaff mixtures were higher than those of sawdust mixtures, but the volume reduction rates of sawdust mixtures were more higher than those of chaff mixtures. Salinity increased as composting reaction proceeded, due to reduction in mass weight. The final salinity of Control was 2.79%, and the final range of salinities of chaff and sawdust mixtures were 2.18∼2.37% and 1.86∼2.05%, respectively.

Comparison of Effects of Rice Straw and Sewage Sludge Cake on Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화에 있어서 볏짚과 하수슬러지케이크가 미치는 영향에 관한 비교 연구)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • This study was performed to compare the effects of rice straw and towage sludge cake as bulking materials on temperature, pH, weight and volume reduction, porosity, C/N ratio, salinity, and conductivity in aerobic composting of food wastes. Volume ratios of food wastes to rice straw in reactor control, RS-1, RS-2, RS-3 and RS-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Weight ratios of food wastes to sewage sludge rake in reactor control, SL-1, SL-2, SL-3 and SL-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The values of pH of food waters, rice straw and sewage sludge cake were 4.39, 7.40 and 5.79, respectively. The lowering of the volume ratio of food wastes to rice straw resulted in the high reaction temperature and the fast weight and volume reduction rates. The lowering of the weight ratio of food wastes to sewage sludge cake resulted in the slow weight and volume reduction rates. C/N ratio in control was larger than that in rice straw containing reactors, and that in rice straw containing reactors was larger than that in sewage sludge cake containing reactors. Salinity and conductivity in reactors were condensed and increased by reaction days.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Study on the Biological Denitrification Reaction of High-Salinity Wastewater using an Aerobic Granular Sludge (AGS) (호기성 그래뉼 슬러지를 이용한 고농도 염분 함유 폐수의 생물학적 탈질 반응에 관한 연구)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.607-615
    • /
    • 2019
  • The purpose of this study is to biological treatment of high salinity wastewater using Aerobic Granular Sludge (AGS). In laboratory scale's experiments research was performed using a sequencing batch reactor, and evaluation of the denitrification reaction in accordance with the injection condition of salinity concentration, surface properties of microorganisms, and sludge precipitability was performed. The results showed that the salinity concentration increased up to 1.5%, and there was no significant difference in the nitrogen removal efficiency; however, it showed a tendency to decrease gradually from 2.0% onward. The specific denitrification rate (SDNR) was 0.052 - 0.134 mg $NO_3{^-}-N/mg$ MLVSS (mixed liquor volatile suspended solid)${\cdot}day$. The MLVSS/MLSS (mixed liquor suspended solid) ratio decreased to 76.2%, and sludge volume index ($SVI_{30}$) was finally lowered to 57 mL/g. Using an optical microscope, it was also observed that the initial size of the sludge was 0.2 mm, and finally it was formed to 0.8-1.0 mm. Therefore, salinity injection provides favorable conditions for the formation of an AGS, and it was possible to maintain stable granular sludge during long-term operation of the biological treatment system.

Formation and Characteristics of Granular Sludge Using Aerobic Granular Reactor (호기성 입상화 장치를 이용한 입상슬러지 생성 및 특성)

  • Lee, Bong-Seob;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1135-1142
    • /
    • 2009
  • This study was carried out to investigate of aerobic granulation by using aerobic granular reactor. To make aerobic granular sludge in short period of time, we used polymer. In reactor, we have studied on physicochemical characteristics of particle size, density, and microbial secreting polymer depending on aerobic particle's formation. The results of running aerobic granular reactor with 3, 6, 9 $kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 35 days reaction time showed that particle size were 3.6 mm, 4.3 mm, and 3.4 mm respectively. The settling velocities were 1.5 cm/s, 1.6 cm/s, and 1.2 cm/s respectively. The microbic growth rates were 0.12 $d^{-1}$, 0.135 $d^{-1}$, and 0.133 $d^{-1}$ respectively. The overall result of aerobic granular reactor showed that $6kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate had optimal physicochemical characteristics.

An Efficient and Mild Oxidation of α-Isophorone to Ketoisophorone Catalyzed by N-Hydroxyphthalimide and Copper Chloride

  • Chen, Lihua;Tang, Ruiren;Li, Zhongying;Liang, Shan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.459-463
    • /
    • 2012
  • N-hydroxyphthalimide (NHPI) and copper chloride ($CuCl_2$) were first utilized for aerobic oxidation of ${\alpha}$-isophorone (${\alpha}$-IP) to ketoisophorone (KIP) and the effects of co-catalysts, temperature, reaction time, solvent, amount of $CuCl_2$ and pressure of oxygen were investigated extensively. NHPI/$CuCl_2$ turned out to be highly efficient to this oxidation with up to 91.3% conversion and 81.0% selectivity under mild conditions. And various hydrocarbons including benzylic compounds, cycloalkene and its derivatives were also oxidized smoothly under optimized conditions. Moreover, the possible reaction mechanism was proposed and verified by FT-IR spectra.