• Title/Summary/Keyword: aerial-based

Search Result 1,271, Processing Time 0.031 seconds

Genotoxicity Study of Polysaccharide Fraction from Astragalus membranaceus's Aerial Parts

  • Park, Yeong-Chul;Kim, Min Hee;Kim, Jung Woo;Kim, Jong-Bong;Lee, Jae Geun;Yu, Chang Yeon;Kim, Seung-Hyun;Chung, Ill Min;Kim, Jae Kwang;Choi, Ri Na;Lim, Jung Dae
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Radix Astragali, the root of Astragalus (A.) membranaceus, has been applied in a variety of diseases for a long time in Asian countries such as Korea and China. In addition, the aerial parts such as leaves and stems of A. membranaceus have received a great deal of attention. Recently, the polysaccharide fraction showing a potent immunomoduating activity was isolated from the aerial parts of A. membranaceus. Thus, the aerial parts of A. membranaceus would be worthy enough for a food material and a dietary supplement. However, they should be safe even though valuable. In our previous study, it was estimated that NOAEL for female rats are 5000 mg/kg/day of the crude polysaccharide fraction from A. membranaceus-aboveground parts. As a series of safety evaluation, genotoxicity test for the crude polysaccharide fraction was carried out in this study. In conclusion, the three genotoxicity assays provided strong overall support that the crude polysaccharide fraction lacks mutagenic and/or clastogenic potential under the GLP-based test conditions. This indicates the aerial parts of A. membranaceus would be safe enough for a food material and a dietary supplement.

Establishment of Test Field for Aerial Camera Calibration (항공 카메라 검정을 위한 테스트 필드 구축방안)

  • Lee, Jae-One;Yoon, Jong-Seong;Sin, Jin-Soo;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • Recently, one of the most outstanding technological characteristics of aerial survey is an application of Direct Georeferencing, which is based on the integration of main sensing sensors such as aerial camera or Lidar with positioning sensors GPS and IMU. In addition, a variety of digital aerial mapping cameras is developed and supplied with the verification of their technical superiority and applicability. In accordance with this requirement, the development of a multi-looking aerial photographing system is just making 3-D information acquisition and texture mapping possible for the dead areas arising from building side and high terrain variation where the use of traditional phptogrammetry is not valid. However, the development of a multi-looking camera integrating different sensors and multi-camera array causes some problems to conduct time synchronization among sensors and their geometric and radiometric calibration. The establishment of a test field for aerial sensor calibration is absolutely necessary to solve this problem. Therefore, this paper describes investigations for photogrammetric Test Field of foreign countries and suggest an establishment scheme for domestic test field.

  • PDF

Current status and Prospects on the Aerial Monitoring (국토 공중모니터링 현황과 발전방향)

  • Shin, Hyu-Seok;Park, Chung-Ki;Kim, Yeon-Mi;Hwang, Sun-Young;Park, Key-Ho
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.173-192
    • /
    • 2008
  • Recent climate fluctuation and environmental change at global scale are causing more incidences of disasters and calamities over the world. In a response to this environmental crisis, international collaboration for Earth Observation(EO) is obtaining more significance in order to understand, watch, and forecast changes in the earth system. As such, aerial monitoring based on remotely sensed data, indispensable for EO, is also drawing more attentions. In this context, we discuss diverse aspects of future developments in the Korean domestic system for aerial monitoring. This paper first thoroughly examines current status of national and international collaboration system arid research of aerial monitoring. It then suggests specific development plans for four critical dimensions such as research, organization, institutional systems, and strategies. Our study would facilitate systematically establishing policies for aerial monitoring in Korea and creating a domestic GEOSS(Global Earth Observation System of Systems) in the near future.

  • PDF

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

A Optimization Study of UAV Path Planning Generation based-on Rapid-exploring Random Tree Method (급속탐색랜덤트리기법 기반의 무인 비행체 경로계획생성 최적화 연구)

  • Jae-Hwan Bong;Seong-Kyun Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.981-988
    • /
    • 2023
  • As the usage of unmanned aerial vehicles expands, the development and the demand of related technologies are increasing. As the frequency of operation increases and the convenience of operation is emphasized, the importance of related autonomous flight technology is also highlighted. Establishing a path plan to reach the destination in autonomous flight of an unmanned aerial vehicle is important in guidance and control, and a technology for automatically generating path plan is required in order to maximize the effect of unmanned aerial vehicle. In this study, the optimization research of path planning using rapid-exploring random tree method was performed for increasing the effectiveness of autonomous operation. The path planning optimization method considering the characteristics of the unmanned aerial vehicle is proposed. In order to achieve indexes such as optimal distance, shortest time, and passage of mission points, the path planning was optimized in consideration of the mission goals and dynamic characteristics of the unmanned aerial vehicle. The proposed methods confirmed their applicability to the generation of path planning for unmanned aerial vehicles through performance verification for obstacle situations.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.

Experiment on Modify and Update National Base Maps using LiDAR Based Mobile Mapping Systems (LiDAR 센서 기반 모바일맵핑시스템을 이용한 국가기본도 수정, 갱신 실험)

  • Cho, Jae-Myoung;Yun, Hong-Sic;Lee, Mi-Ran;Cho, Hyun-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.281-284
    • /
    • 2010
  • Recently the development of digital based measurement sensor with which a variety of surveying equipment and methods are being developed. In the field of aerial mapping using GPS, INS and Digital Camera instead of Film based Camera. In case of aerial photogrammetry for mapping, it is effective on wide area. But it is ineffective on narrow area. Therefore, the research experimented that used LiDAR sensor based mobile mapping systems for modify and update about region of Suwon and Yeouido. From these results a possibility and an effectiveness analyzed and evaluated LiDAR sensor based mobile mapping systems.

  • PDF

Automated Analysis of Scaffold Joint Installation Status of UAV-Acquired Images

  • Paik, Sunwoong;Kim, Yohan;Kim, Juhyeon;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.871-876
    • /
    • 2022
  • In the construction industry, fatal accidents related to scaffolds frequently occur. To prevent such accidents, scaffolds should be carefully monitored for their safety status. However, manual observation of scaffolds is time-consuming and labor-intensive. This paper proposes a method that automatically analyzes the installation status of scaffold joints based on images acquired from a Unmanned Aerial Vehicle (UAV). Using a deep learning-based object detection algorithm (YOLOv5), scaffold joints and joint components are detected. Based on the detection result, a two-stage rule-based classifier is used to analyze the joint installation status. Experimental results show that joints can be classified as safe or unsafe with 98.2 % and 85.7 % F1-scores, respectively. These results indicate that the proposed method can effectively analyze the joint installation status in UAV-acquired scaffold images.

  • PDF

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

A Study on Efficient Methods of Pesticide Control Using Agricultural Unmanned Aerial Vehicles (농업용 무인항공기를 활용한 농약방제 효율성 방안에 관한 연구)

  • Jeong, Ga-Young;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • In the agricultural environment, pesticide control requires a high risk of work and a high labor force for farmers. The effectiveness of pesticide control using unmanned aerial vehicles varies according to climate, land type, and characteristics of unmanned aerial vehicles. Therefore, an effective method for pesticide control by unmanned aerial vehicles considering the spraying conditions and environmental conditions is required. In this paper, we propose an efficient pesticide control system based on agricultural unmanned aerial vehicles considering the application conditions and environmental information for each crop. The effectiveness of the proposed model was demonstrated by measuring the drop uniformity of pesticides according to the change in altitude and speed after attaching the sensory paper and measuring the penetration rate of the drug inside the canopy according to the change in crop growth conditions. Experiment result, the closer the height of the UAV is to the ground, the more evenly the crops are sprayed, but for safety reasons, 2m more is suitable, and on average a speed of 2m/s is most suitable for control. The proposed control system is expected to help develop intelligent services based on the use of various unmanned aerial vehicles in agricultural environments.