• 제목/요약/키워드: aerial-based

검색결과 1,284건 처리시간 0.028초

Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구 (Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio)

  • 권정혁;최효현;김의직
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2022
  • 본 논문은 Wake-up radio를 활용한 지역화 Time Slotted Channel Hopping (TSCH) 슬롯프레임 기반 항공 데이터 수집 기법을 제안한다. 제안하는 기법은 무인항공기가 대규모 서비스 영역 내 배치된 센서 기기들의 데이터를 수집할 때 소요되는 지연 시간 및 소모 에너지를 최소화하는 것을 목표로 한다. 이를 위해, 제안 기법은 서비스 영역을 다수의 지역으로 분할하고, 각 지역 내 센서 기기들이 요구하는 셀의 수에 따라 지역별로 TSCH 슬롯프레임의 길이를 결정한다. 이후, 각 지역 내 센서 기기들의 ID를 활용하여 TSCH 슬롯프레임 내 데이터 전송 전용 셀을 할당한다. 에너지 효율적인 데이터 수집을 위해, 센서 기기는 Wake-up radio를 활용한다. 구체적으로, 센서 기기는 Wake-up radio를 활용하여 비콘 수신 및 데이터 전송을 위해 할당된 셀에서만 네트워크 인터페이스를 활성화한다. 시뮬레이션 결과는 제안 기법이 기존 기법 대비 지연 시간 및 에너지 소모 측면에서 더 우수한 성능을 가지는 것을 보여주었다.

재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구 (Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation)

  • 김수호;심재홍
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

조간대에서의 수중문화재 조사를 위한 무인항공기의 적용 가능성에 관한 연구 (A Study on the Applicability of Unmanned Aerial Vehicles for Underwater Cultural Heritage Survey in Intertidal Zones)

  • 이영현;최동원;이상희;김성보
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.697-703
    • /
    • 2023
  • Intertidal zones, akin to tidal flats, are among the potential areas where underwater cultural heritage might be submerged. However, the shallow depths in these regions present challenges for conventional vessel-based survey methods. Moreover, during low tides, intertidal zones transform into tidal flats, limiting the efficiency of survey efforts due to restricted access and potential risks. As a result, proper underwater cultural heritage surveys encounter difficulties in these environments. In recent times, extensive research is underway to address these issues by investigating underwater cultural heritage surveys in intertidal zones, encompassing diverse fields, including equipment-based investigations. This study aimed to explore the feasibility of utilizing unmanned aerial vehicles (UAVs) to conduct intertidal cultural heritage surveys, employing aerial photography and 3D mapping to create detailed orthoimages and 3D models. The study focused on assessing the potential application of these techniques for cultural heritage surveying within intertidal zones. Notably, the survey conducted in Jindo's Naesan-ri demonstrated high-resolution capabilities, enabling the distinction of actual pottery fragments mixed within gravel fields. Similarly, in the survey of Jindo's Byeokpa-hang, it was found that a wooden pillar structure existed in a section about 200m long. The integration of various sensors, including LiDAR, with UAVs allows for diverse investigation possibilities, including bathymetric measurements, and is expected to facilitate the acquisition of varied datasets for further research and assessment.

Beacon-Based Indoor Location Measurement Method to Enhanced Common Chord-Based Trilateration

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1640-1651
    • /
    • 2017
  • To make an unmanned aerial vehicle (UAVs) fly in indoor environments, the indoor locations of the UAV are required. One of the approaches to calculate the locations of an UAV in indoor environments is enhanced trilateration using one Bluetooth-based beacon and three or more access points (APs). However, the locations of the UAV calculated by the common chord-based trilateration has errors due to the distance errors of the beacon measured at the multiple APs. This paper proposes a method that corrects the errors that occur in the process of applying the common chord-based trilateration to calculate the locations of an UAV. In the experiments, the results of measuring the locations using the proposed method in an indoor environment was compared and verified against the result of measuring the locations using the common chord-based trilateration. The proposed method improved the accuracy of location measurement by 81.2% compared to the common chord-based trilateration.

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

자동 공중급유를 위한 적외선 영상기반 상대 항법 (Relative Navigation for Autonomous Aerial Refueling Using Infra-red based Vision Systems)

  • 윤형철;양유영;이현재
    • 한국항공우주학회지
    • /
    • 제46권7호
    • /
    • pp.557-566
    • /
    • 2018
  • 본 논문에서는 항공기 자동 공중급유를 위해 영상기반 상대 항법 시스템을 구현한다. 급유기와 피급유기는 프로브-드로그 방식의 공중급유를 가정하며 상대항법은 피급유기가 드로그에 대한 상대정보를 획득하며 진행한다. 드로그로부터 상대정보를 획득하기 위해 드로그 형태를 규정하고 IR카메라를 이용한 영상처리를 진행한다. 영상처리를 통해 얻은 드로그의 정보로부터 Gaussian Least Squares Differential Correction(GLSDC) 및 Levenberg-Marquardt(LM)을 이용한 상대항법을 진행하고 시뮬레이션을 통해 두 알고리즘의 분석을 수행한다.

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • 제2권4호
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

BIM 적용을 위한 공간정보의 정확도 기반 활용성 평가 (Accuracy-based Evaluation of the Utilization of Spatial Information for BIM Application)

  • 김두표
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.669-678
    • /
    • 2023
  • Recently, spatial information has been applied to various fields and its usability is increasing day by day. In particular, in the field of civil engineering and construction, BIM based on spatial information is being applied to all construction industries and related research has been conducted. BIM is a technology that utilizes spatial information from the design phase and aids in the construction and maintenance of buildings, including the management of their attributes. However, to apply BIM technology to existing buildings, it takes a lot of time and money to produce models based on design drawings along with current surveying. In this study, quantitative and qualitative analysis was conducted to determine the applicability of the acquired data and the applicability of BIM by generating data and analyzing the accuracy using UAV images and ground lidar, which are representative spatial information acquisition methods. Quantitative analysis revealed that TLS (Terrestrial Laser Scanner) showed reliable accuracy in both planar and elevation measurements, whereas unmanned aerial images exhibited lower accuracy in elevation measurements, resulting in reduced reliability. Qualitative analysis indicated that neither TLS nor unmanned aerial images alone provided perfect completeness. However, the combination of both spatial information sources, tailored to specific needs, resulted in the most comprehensive completeness. Therefore, it is concluded that the appropriate utilization of spatial information acquired through unmanned aerial images and TLS holds the potential for application in the fields of BIM and reverse engineering.

멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발 (Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller)

  • 곽두영;이수갑
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.89-99
    • /
    • 2017
  • 멀티로터형 무인항공기는 군사용 목적뿐 아니라 항공 촬영 및 무인 택배 수단 등 민간 산업까지 그 활용 범위를 넓혀가고 있다. 무인항공기의 보다 폭넓은 활용을 위해서는 추진체인 프로펠러의 공력 효율 개선과 소음의 저감을 위한 연구가 선행되어야 하며, 이는 주어진 환경에서 공력 성능 및 소음을 예측할 수 있는 기술이 바탕이 되어야만 가능하다. 본 연구에서는 소형 무인항공기 프로펠러를 대상으로 공력 및 소음 예측 기법을 개발하고, 실제 측정을 통한 결과와의 비교를 통해 검증하였다. 분당 회전수의 변화에 따른 추력 및 토크와 주어진 위치에서의 주파수 스펙트럼 예측에서 모두 예측 기법의 신뢰성을 확보하였으며, 이를 통해 프로펠러의 형상 설계에 기반이 될 수 있는 기틀을 마련하였다.