• 제목/요약/키워드: aerial monitoring

검색결과 285건 처리시간 0.019초

조간대 지형변화측량의 방법과 문제 (Surveying for Monitoring Topographic Changes of Tidal Zone)

  • 이창경;진준호
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.553-558
    • /
    • 2004
  • Periodic profiling by level is a conventional method for monitoring topographic changes in a specific part of tidal zone. Periodic aerial photographs are used for monitoring topographic change of broad tidal zone area. In this study, spot heights at interval of 50m on 5 profiling lines were leveled periodically for precise monitoring topographic change of tidal zone. For monitoring broad topographic change of tidal zone, aerial photographs were also taken by film camera loaded on pilotless helicopter periodically Periodic profiling shows the change of heights on the lines well. On the other hand, aerial photographs taken by film camera loaded on pilotless helicopter have some problems to detect topographic change of tidal zone precise. Because the scale and incline of the photographs were not same, it is hard to compare them. Therefore, for more precise monitoring of topographic changes in tidal zone, it is need to take aerial pictures with same scale and same incline.

  • PDF

A Feasibility Study of Highway Traffic Monitoring using Small Unmanned Aerial Vehicle

  • Ro, Kap-Seong;Oh, Jun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.54-66
    • /
    • 2007
  • Traffic and emergency monitoring systems are essential constituents of Intelligent Transportation System (ITS) technologies, but the lack of traffic monitoring has become a primary weakness in providing prompt emergency services. Demonstrated in numerous military applications, unmanned aerial vehicles (UAVs) have great potentials as a part of ITS infrastructure for providing quick and real-time aerial video images of large surface area to the ground. Despite of obvious advantages of UAVs for traffic monitoring and many other civil applications, it is rare to encounter success stories of UAVs in civil application including transportation. The objective of this paper is to report the outcomes of research supported by the state agency in US to investigate the feasibility of integrating UAVs into urban highway traffic monitoring as a part of ITS infrastructure. These include current technical and regulatory issues, and possible suggestions for a future UAV system in civil applications.

국토 공중모니터링 현황과 발전방향 (Current status and Prospects on the Aerial Monitoring)

  • 신휴석;박충기;김연미;황선영;박기호
    • Spatial Information Research
    • /
    • 제16권2호
    • /
    • pp.173-192
    • /
    • 2008
  • 전 세계적으로 기후변화와 환경변화로 인한 재난, 재해의 발생 빈도가 빈번해지고 규모가 커지면서 지구시스템의 변화를 이해, 감시, 예측하기 위한 지구관측(Earth Observation)관련 국제협력이 강화되고 있다. 이에 지구관측에 필수적인 원격탐사 자료를 이용한 공중모니터링의 중요성이 매우 커지고 있다. 이와 같은 상황에서 이 논문은 국내외 공중모니터링 관련 협력체계 및 연구 현황을 살펴본 후, 국내의 공중모니터링 체계의 발전방향에 대하여 연구적 측면, 조직 및 제도적 측면, 전략적 측면에서 논의하였다. 이 연구의 결과는 체계적인 공중모니터링 방안 수립에 대한 토대를 제공하고 향후 국내 전지구관측시스템(Global Earth Observation System of Systems) 구축을 위한 기초적 자료로 사용될 수 있을 것으로 기대된다.

  • PDF

Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

  • Gu, Beom W.;Choi, Su Y.;Choi, Young Soo;Cai, Guowei;Seneviratne, Lakmal;Rim, Chun T.
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.982-996
    • /
    • 2016
  • In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

UAV 기반 저가 멀티센서시스템을 위한 무기준점 AT를 이용한 영상의 Georeferencing (Image Georeferencing using AT without GCPs for a UAV-based Low-Cost Multisensor System)

  • 최경아;이임평
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.249-260
    • /
    • 2009
  • 공중 모니터링 시스템으로 획득된 센서 데이터의 georeferencing 정확도는 시스템에 탑재된 GPS/IMU의 성능에 크게 의존된다. 그러나 고성능이지만 고가인 GPS/IMU의 탑재는 전체 시스템의 개발비를 크게 증가시키는 문제를 야기한다. 이에 본 연구는 MEMS 형태의 저가 통합형 GPS/IMU를 탑재한 UAV 기반의 공중 모니터링 시스템으로부터 취득된 영상 및 GPS/IMU 데이터를 시뮬레이션하고, 시뮬레이션된 센서 데이터에 지상기준점을 사용하지 않고 aerial triangulation을 적용하여 영상 georeferencing을 수행한다. 영상 georeferencing의 결과를 분석하여 각 영상의 추정된 외부표정변수와 지상점 좌표의 정확도를 평가한다. Aerial triangulation 없이 direct georeferencing을 수행한 결과와 비교할 때 외부표정변수와 지상점 좌표의 RMSE가 90%이상 감소하였다. 본 연구를 통해 저가 실시간 공중 모니터링 시스템 개발의 높은 가능성을 확인할 수 있었다.

실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정 (Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System)

  • 한중희;권재현;이임평;최경아
    • 한국측량학회지
    • /
    • 제28권5호
    • /
    • pp.531-537
    • /
    • 2010
  • 실시간 공중자료획득 시스템은 긴급상황에서 실시간으로 공간정보를 생성하기 위해 빠른 매핑을 수행하는 시스템이다. 이 시스템은 GPS/INS 통합 알고리즘에서 제공한 위치 및 자세를 사용하여 무기준점 방식의 AT(aerial truangulation)을 수행한다. 따라서 순차적으로 AT을 통한 조정된 위치 및 자세를 얻을 수 있다면, 이를 칼만필터의 측정치로 하여 위치 및 자세를 보정할 수 있다. 이에 본 연구는 무인항공기 기반의 항공시스템을 기준으로 GPS/IMS Image 시뮬레이션 데이터를 생성하였다. 생성된 시뮬레이션 데이터를 이용하여 GPS/INS 통합 알고리즘을 통한 AT 수행결과와 AT을 통해 조정된 위치 및 자세를 이용하여 GPS/INS 위치 및 자세를 보정하는 GPS/INS/AT 통합 알고리즘에 의해 계산된 AT의 결과를 산출하여 비교하였다. 비교분석 결과, GPS/INS/AT 통합 알고리즘으로 AT를 수행한 결과가 GPS/INS를 이용한 AT를 수행한 결과보다 정확성이 높은 것을 확인하였다. 그러나 항체가 회전을 할 경우에는 위치 오차가 GPS/INS로 부터의 위치오차보다 높게 나오는 경향을 보였으며, 추후 분석이 필요할 것이라고 사료된다.

무인항공기를 활용한 농촌 지역자원의 물리적 환경변화 분석연구 - 홍성군 갈산면 지역자원을 중심으로 - (A Study on the Changes in the Physical Environment of Resources in Rural Areas Using UAV -Focusing on Resources in Galsan-Myeon, Hongseong-gun-)

  • 안필균;김상범;조숙영;엄성준;김용균;조한솔
    • 한국농촌건축학회논문집
    • /
    • 제23권4호
    • /
    • pp.1-12
    • /
    • 2021
  • Recently, the use of unmanned aerial vehicles (UAVs) is increasing in the field of land information acquisition and terrain exploration through high-altitude aerial photography. High-altitude aerial photography is suitable for large-scale geographic information collection, but has the disadvantage that it is difficult to accurately collect small-scale geographic information. Therefore, this study used low-altitude UAV to monitor changes in small rural spaces around rural resources, and the results are as follows. First, the low-altitude aerial imagery had a very high spatial resolution, so it was effective in reading and analyzing topographic features. Second, an area with a large number of aerial images and a complex topography had a large amount of point clouds to be extracted, and the number of point clouds affects the three-dimensional quality of rural space. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. In this study, the possibility of rural space analysis of low-altitude UAV was verified through aerial photography and analysis, and the effect of 3D mapping on rural space monitoring was visually analyzed. If data acquired by low-altitude UAV are used in various forms such as GIS analysis and topographic map production it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Concepts and applications for integrating Unmanned Aerial Vehicles (UAV's) in disaster management

  • Naser, M.Z.;Kodur, V.K.
    • Advances in Computational Design
    • /
    • 제5권1호
    • /
    • pp.91-109
    • /
    • 2020
  • Over the past few decades, the impact of natural, manmade and natech (natural hazard triggering technological disasters) disasters has been devastating, affecting over 4.4 billion people. In spite of recent technological advances, the increasing frequency and intensity of natural disasters and the escalation of manmade threats is presenting a number of challenges that warrant immediate attention. This paper explores the integration of drones or Unmanned Aerial Vehicles (UAV's) into infrastructure monitoring and post-disaster assessment. Through reviewing some of the recent disasters, effectiveness of utilizing UAV's in different stages of disaster life cycle is demonstrated and needed steps for successful integration of UAV's in infrastructure monitoring, hazard mitigation and post-incident assessment applications are discussed. In addition, some of the challenges associated with implementing UAV's in disaster monitoring, together with research needs to overcome associated knowledge gaps, is presented.

Small Unmanned Aerial System (SUAS) for Automating Concrete Crack Monitoring: Initial Development

  • Kang, Julian;Lho, B.C.;Kim, J.W.;Nam, S.H.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.310-312
    • /
    • 2015
  • Small Unmanned Aerial Systems (SUAS) have been gaining a special attention in the U.S. recently because it is capable of getting aerial footages conveniently and cost effectively, but also because of its potential threat to the safety of our society. Regarding the benefits, one can easily find successful cases. For example, remote controlled or pre-programmed unmanned aircraft help ranch owners monitor their livestocks or crop harvesting status cost-effectively without having to hire human pilots. The professionals in the construction industry also acknowledge the benefits they could gain from using SUAS. Some firms already use a small unmanned aircraft for monitoring their construction activities, which may help project managers figure out construction progress, resolve disputes in real time, and make proactive decisions for quality control. However, there are many technical challenges that my hinder the use of small unmanned aircraft in the construction industry. This paper explores opportunities and challenges in using unmanned aircraft to monitor concrete cracks on the surface of containment building in the nuclear power plant.

  • PDF

Monitoring butterflies with an unmanned aerial vehicle: current possibilities and future potentials

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • 제41권3호
    • /
    • pp.72-77
    • /
    • 2017
  • The world of technology is pleasantly evolving to a stage where small robotic aid may be used to ease the work of researchers, and to one day bring more accurate results than the current human abilities allow. In the research field of species monitoring in biology, unmanned aerial vehicles (UAVs) have begun to play an important role in how research is approached, analyzed, and then applied for further investigation, particularly by focusing on a single species. This paper uses data that has been collected from June to October 2015, to demonstrate how the innovative idea of using UAVs to monitor a particular species will bring a positive development in conservation research, and what it was able to achieve in this research field so far. More precisely, we examine the potential of UAVs to take center stage in future research, as well as their current accuracy. This paper describes the use of the commercially available Phantom 2 Vision+ for the detection, assessment, and monitoring of the butterfly species Libythea celtis, demonstrating how it can help the monitoring of butterflies and how it could be developed for even more adventurous and detailed research in the future.