DOI QR코드

DOI QR Code

Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

  • Gu, Beom W. (Department of Nuclear and Quantum Engineering, KAIST) ;
  • Choi, Su Y. (Department of Nuclear and Quantum Engineering, KAIST) ;
  • Choi, Young Soo (Korea Atomic Energy Research Institute) ;
  • Cai, Guowei (Department of Aerospace Engineering, Khalifa University) ;
  • Seneviratne, Lakmal (Department of Aerospace Engineering, Khalifa University) ;
  • Rim, Chun T. (Department of Nuclear and Quantum Engineering, KAIST)
  • Received : 2015.11.30
  • Accepted : 2016.02.20
  • Published : 2016.08.25

Abstract

In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

Keywords

References

  1. A. Aghaeeyan, F. Abdollahi, H. Talebi, UAV guidance for tracking control of mobile robots in presence of obstacles, In: Robotics and Mechatronics (ICRoM), RSI/ISM International Conference, Tehran, Iran, February 13-15, 2013.
  2. A. Franchi, C. Secchi, H.I. Son, H.H. Bulthoff, P.R. Giordano, Bilateral teleoperation of groups of mobile robots with timevarying topology, IEEE Trans. Robot 28 (2012) 1019-1033. https://doi.org/10.1109/TRO.2012.2196304
  3. C. Hager, D. Zarzhitsky, H. Kwon, D. Pack, Cooperative target localization using heterogeneous unmanned ground and aerial vehicles, In: Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference, Taipei, Taiwan, October 18-22, 2010.
  4. S. Ulun, M. Unel, Coordinated motion of UGVs and a UAV, In: Industrial Electronics Society, IECON Annual Conference of the IEEE, Vienna, Austria, November 10-13, 2013.
  5. J.K. Lee, J.C. Kim, K.J. Lee, M. Belorid, P.A. Beeley, J.I. Yun, Assessment of wind characteristics and atmospheric dispersion modeling of $^{137}$Cs on the Barakah NPP area in the UAE, Nucl. Eng. Technol. 46 (2014) 557-568. https://doi.org/10.5516/NET.09.2014.029
  6. E. Guizzo, Fukushima robot operator writes Tell-All blog on the Fukushima robot diaries, IEEE Spectrum, Aug., vol. 23, 2011.
  7. E.U. Acar, H. Choset, Y. Zhang, M. Schervish, Path planning for robotic demining: Robust sensor-based coverage of unstructured environments and probabilistic methods, Int. J. Robot. Res. 22 (2003) 441-466. https://doi.org/10.1177/02783649030227002
  8. S. Kim, S. Bhattacharya, V. Kumar, Path planning for a tethered mobile robot, In: Robotics and Automation (ICRA), IEEE International Conference, Honkong, China, May 31-June 7, 2014.
  9. N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, S. Tadokoro, Collaborative mapping of an earthquake-damaged building via ground and aerial robots, J. Field Robot 29 (2012) 832-841. https://doi.org/10.1002/rob.21436
  10. K.S. Pratt, R.R. Murphy, J.L. Burke, J. Craighead, C. Griffin, S. Stover, Use of tethered small unmanned aerial system at Berkman Plaza II collapse, In: Safety, Security and Rescue Robotics (SSRR), IEEE International Workshop, Sendai, Japan, October 21-24, 2008.
  11. I. Shnaps, E. Rimon, Online coverage by a tethered autonomous mobile robot in planar unknown environments, IEEE Trans. Robot 30 (2014) 966-974. https://doi.org/10.1109/TRO.2014.2301534
  12. C. Cai, D. Du, Z. Liu, Advanced traction rechargeable battery system for cableless mobile robot, In: Advanced Intelligent Mechatronics (AIM), IEEE/ASME International Conference, Kobe, Japan, July 20-24, 2003.
  13. A. Kottas, A. Drenner, N. Papanikolopoulos, Intelligent power management: Promoting power-consciousness in teams of mobile robots, In: Robotics and Automation (ICRA), IEEE International Conference, Kobe, Japan, May 12-17, 2009.
  14. R.C. Luo, K.L. Su, Multilevel multisensor-based intelligent recharging systemfor mobile robot, IEEE Trans. Ind. Electron. 55 (2008) 270-279. https://doi.org/10.1109/TIE.2007.903989
  15. H. Tanner, D. Christodoulakis, Cooperation between aerial and ground vehicle groups for reconnaissance missions, In: Decision and Control, IEEE Conference, San Diego, CA, USA, December 13-15, 2006.
  16. S. Choi, E. Lee, K. Lee, S. Kim, C.T. Rim, Tethered contactless mobile nuclear environment monitoring robot, In: Trans. on the Korean Nuclear Society Spring Meeting, Gwangju, Korea, May 16-18, 2013.
  17. S. Choi, S. Yoo, K. Lee, C.T. Rim, Wireless power system design for mobile robots used in nuclear power plants, In: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-18, 2012.
  18. A. Esser, H.C. Skudelny, A new approach to power supplies for robots, IEEE Trans. Ind. Appl. 27 (1991) 872-875. https://doi.org/10.1109/28.90341
  19. H. Ishida, H. Furukawa, Wireless power transmission through concrete using circuits resonating at utility frequency of 60 Hz, IEEE Trans. Power Electron. 30 (2015) 1220-1229. https://doi.org/10.1109/TPEL.2014.2322876
  20. A. Kawamura, K. Ishioka, J. Hirai, Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications, IEEE Trans. Ind. Electron. 32 (1996) 2367-2372.
  21. K. Lee, Z. Pantic, S.M. Lukic, Reflexive field containment in dynamic inductive power transfer systems, IEEE Trans. Power Electron. 29 (2014) 4592-4602. https://doi.org/10.1109/TPEL.2013.2287262
  22. C. Park, S. Lee, G. Cho, S. Choi, C.T. Rim, Two-Dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups, IEEE Trans. Industry App. 50 (2014) 558-565. https://doi.org/10.1109/TIA.2013.2271604
  23. M.P. Theodoridis, Effective capacitive power transfer, IEEE Trans. Power Electron. 27 (2014) 4906-4913.
  24. S. Dehghan, M. Zarezadeh, N. Farhadian, H. Moradi, The design, modeling and control of a tethered aerial robot for search and rescue missions, In: Robotics and Biomimetics (ROBIO), IEEE International Conference, Phucket, Thailand, December 7-11, 2011.
  25. T. Netter, N. Francheschini, A robotic aircraft that follows terrain using a neuromorphic eye, In: Intelligent Robots and Systems, IEEE/RSJ International Conference, Lausanne, Switzerland, September 30-Oct. 4, 2002.
  26. M. Krishna, J. Bares, E. Mutschler, Tethering system design for Dante II, In: Robotics and Automation, IEEE International Conference, Albuquerque, NM, USA, April 25, 1997.
  27. P. McGarey, F. Pomerleau, T.D. Barfoot, System design of a tethered robotic explorer (TReX) for 3D mapping of steep terrain and harsh environments, In: Field and Service Robotics (FSR), Conference, Toronto, Canada, June 24-26, 2015.
  28. I.A. Nesnas, J.B. Matthews, P. Abad-Manterola, J.W. Burdick, J.A. Edlund, J.C. Morrison, R.D. Peters, M.M. Tanner, R.N. Miyake, B.S. Solish, R.C. Anderson, Axel and DuAxel rovers for the sustainable exploration of extreme terrains, J. Field Robot. 29 (2012) 663-685. https://doi.org/10.1002/rob.21407
  29. H. Schempf, B. Chemel, N. Everett, Neptune: above-ground storage tank inspection robot system, IEEE Robot. Autom. 2 (1995) 9-15. https://doi.org/10.1109/100.392414
  30. M. Ruviaro, F. Ruencos, N. Sadowski, I.M. Borges, Analysis and test results of a brushless doubly fed induction machine with rotary transformer, IEEE Trans. Ind. Electron. 59 (2012) 2670-2677. https://doi.org/10.1109/TIE.2011.2165457
  31. R. Trevisan, A. Costanzo, A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers, IEEE Tran. Ind. Electron. 61 (2014) 6337-6345.
  32. S.Y. Choi, B.H. Choi, S.Y. Jeong, B.W. Gu, S.J. Yoo, C.T. Rim, Tethered aerial robots using contactless power systems for extended mission time and range, In: Energy Conversion Congress and Exposition (ECCE), IEEE International Conference, Pittsburgh, PA, USA, September 14-18, 2014.
  33. R.L. Steigerwald, A comparison of half-bridge resonant converter topologies, IEEE Trans. Power Electron. 3 (1998) 174-182.
  34. A.J. Moradewicz, M.P. Kazmierkowski, Contactless energy transfer system with FPGA-controlled resonant converter, IEEE Tran. Ind. Electron. 57 (2010) 3181-3190.
  35. K.D. Papastergiou, D.E. Macpherson, An airborne radar power supply with contactless transfer of energy -Part I: Rotating transformer, IEEE Tran. Ind. Electron. 54 (2007) 2874-2884. https://doi.org/10.1109/TIE.2007.902044
  36. A.I. Pressman, K. Billings, T. Morey, Switching Power Supply Design, third ed., McGraw-Hill, Columbus, OH, USA, 2009.
  37. J.P.C. Smeets, T.T. Overboom, J.W. Jansen, E.A. Lomonova, Modeling framework for contactless energy transfer systems for linear actuators, IEEE Trans. Power Electron. 60 (2013) 391-399. https://doi.org/10.1109/TED.2012.2223821
  38. Vicor Co., Design Guide & Applications Manual for Maxi, Mini, Micro Family DC-DC Converter and Accessory Modules, Andover, MA, USA, 2014.

Cited by

  1. A novel inspection robot for nuclear station steam generator secondary side with self-localization vol.4, pp.None, 2016, https://doi.org/10.1186/s40638-017-0078-y
  2. Research Progress of Nuclear Emergency Response Robot vol.452, pp.None, 2018, https://doi.org/10.1088/1757-899x/452/4/042102