• Title/Summary/Keyword: advanced vehicle

Search Result 1,341, Processing Time 0.033 seconds

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

Study on Effectiveness of Accident Reduction Depending on Autonomous Emergency Braking System (AEB 장치에 대한 사고경감 효과 연구)

  • Choi, JunYoung;Kang, SeungSu;Park, EunAh;Lee, KangWon;Lee, SiHun;Cho, SooKang;Kwon, YoungGil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • This paper describes effectiveness of accident reduction on vehicles equipped with AEB using accident data occurring in Korea. During the statistical period, we used the number of vehicles which are covered by auto insurance and the number of accidents. To maximize the reduction effect of accidents caused by the driver's carelessness, the analysis was limited to Physical Damage Coverage that covers the cost of repairing or replacing the damaged vehicle caused by the driver's fault. Due to Personal Information Protection Law, it was not capable of comparing the same vehicle using Vehicle Identification Number in this study. Instead of that, we used it as a similar vehicle, so there are limits to the comparison and analysis results. As a result of this study, we have found that the effect of reducing accidents was different depending on the vehicle class, but it was generally concluded that the number of accidents decreased when the vehicle was equipped with an AEB system. Domestic research on the AEB effect of reducing accidents is not active yet. Therefore, it is absolutely essential to analyze the effects according to various conditions such as driver's age, occupation and gender as well as expanding the study models in the future.

The Development of Air-based Space Launch Vehicle for small satellites (초소형위성 발사를 위한 공중기반 우주발사체 발전방안)

  • Cho, Taehwan;Lee, Soungsub
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • The end of the ROK-U.S. missile guidelines opened up the possibility of developing space launch vehicles for various platforms based on air and sea. In particular, the air-based space launch vehicle is an essential space power projection capability compared to the ground-based space launch vehicle in consideration of the geographical location of the Korean Peninsula, such as the deployment of various satellite orbits and the timely launch of satellite. In addition, compared to the ground-based launch vehicle, the cost reduction effect is large, and it has the merit of energy gain because it can be launched with the advantage of the aircraft's altitude and speed. Therefore, in this paper, the necessity of air-based space launch vehicle in the strategic environment of the Korean Peninsula is clearly presented, and through technology trend analysis of various air launch vehicle, the three methods are proposed to have the most efficient air-based space launch vehicle capability in the Korean situation.

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.

Advanced Lane Change Assist System for Automatic Vehicle Control in Merging Sections : An algorithm for Optimal Lane Change Start Point Positioning (고속도로 합류구간 첨단 차로변경 보조 시스템 개발 : 최적 차로변경 시작 지점 Positioning 알고리즘)

  • Kim, Jinsoo;Jeong, Jin-han;You, Sung-Hyun;Park, Janhg-Hyon;Young, Jhang-Kyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.9-23
    • /
    • 2015
  • A lane change maneuver which has a high driver cognitive workload and skills sometimes leads to severe traffic accidents. In this study, the Advanced Lane Change Assist System (ALCAS) was developed to assist with the automatic lane changes in merging sections which is mainly based on an automatic control algorithm for detecting an available gap, determining the Optimal Lane Change Start Point (OLCSP) in various traffic conditions, and positioning the merging vehicle at the OLCSP safely by longitudinal automatic controlling. The analysis of lane change behavior and modeling of fundamental lane change feature were performed for determining the default parameters and the boundary conditions of the algorithm. The algorithm was composed of six steps with closed-loop. In order to confirm the algorithm performance, numerical scenario tests were performed in various surrounding vehicles conditions. Moreover, feasibility of the developed system was verified in microscopic traffic simulation(VISSIM 5.3 version). The results showed that merging vehicles using the system had a tendency to find the OLCSP readily and precisely, so improved merging performance was observed when the system was applied. The system is also effective even during increases in vehicle volume of the mainline.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

A Study on Mode Confusions in Adaptive Cruise Control Systems (적응 순항 제어 시스템에서의 모드 혼동에 관한 연구)

  • Ahn, Dae Ryong;Yang, Ji Hyun;Lee, Sang Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.473-482
    • /
    • 2015
  • Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

A Study on the Development of Traffic Data Acquisition System Using Laser (레이저를 이용한 교통 데이터 수집장치 개발에 관한 연구)

  • Moon, Hak-Yong;Choi, Do-Hyuk;Choi, Dae-Soon;Ryu, Seung-Ki;Kim, Young-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.680-682
    • /
    • 1999
  • In this paper, we propose an traffic data acquisition method and automatic vehicle classification system using laser. We use a invisible laser to minimize measuring error caused by environmental variation. also we use radio frequency data communication and PCMCIA for operating convenience.

  • PDF

Circular Ethernet-based In-Vehicle Network Protocol (링 형태의 이더넷 기반의 차량 내 네트워크 프로토콜)

  • Park, Pu-Sik;Cho, Jong-Chan;Yoon, Jong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2007
  • This paper proposes the ethernet-based in-vehicle networking method for "body" and "multimedia" domains. The ethernet-based in-vehicle networking method should modify the topology and the layer 2 for traffic shaping. In this paper, we simulate the two ring networking systems, the Media Oriented Systems Transport (MOST) and the proposed system with the shaping by the network simulator 2 and evaluate each performance. In addition, we demonstrate the proposed networking system to exchange two kinds of traffic, i.e., QoS data and best-effort data, on the ring network constituting of three nodes. Finally this paper expects to substitute the ethernet-based in-vehicle network for the MOST in advance.

  • PDF