• Title/Summary/Keyword: advanced vehicle

Search Result 1,341, Processing Time 0.03 seconds

Comparative Crashworthiness Assessment of the ULSAB-AVC Model with Advance High Strength Steel and with Low Strength Steel (고강도 강판 ULSAB-AVC 모델과 일반강판 모델의 충돌성능 비교 평가)

  • Yoon, Jong-Heon;Huh, Hoon;Kim, Se-Ho;Kim, Hong-Kee;Park, Seung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • As the regulation and assessment program for safety of passengers become stringent, automakers are required to develop lighter and safer vehicles. In order to fulfill both requirements which conflict with each other, automobile and steel companies have proposed the application of AHSS(Advance High Strength Steel) such as DP, TRIP and martensite steel. ULSAB-AVC model is one of the most remarkable reactions to offer solutions with the use of steel for the challenge to improve simultaneously the fuel efficiency, passenger safety, vehicle performance and affordability. This paper is concerned with the crash analysis of ULSAB-AVC model according to the US-SINCAP in order to compare the effectiveness between the model with AHSS and that with conventional steels. The crashworthiness is investigated by comparing the deformed shape of the cabin room, the energy absorption characteristics and the intrusion velocity of a car.

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.650-665
    • /
    • 2023
  • A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

Unmanned Ground Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance (충돌회피 및 차선추적을 위한 무인자동차의 제어 및 모델링)

  • Yu, Hwan-Shin;Kim, Sang-Gyum
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.359-370
    • /
    • 2007
  • Lane tracking and obstacle avoidance are considered two of the key technologies on an unmanned ground vehicle system. In this paper, we propose a method of lane tracking and obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. First, obstacle avoidance consists of two parts: a longitudinal control system for acceleration and deceleration and a lateral control system for steering control. Each system is used for unmanned ground vehicle control, which notes the vehicle's location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacle and perform obstacle avoidance on the road, which involves vehicle velocity. Second, we explain a method of lane tracking by means of a vision system, which consists of two parts: First, vehicle control is included in the road model through lateral and longitudinal control. Second, the image processing method deals with the lane tracking method, the image processing algorithm, and the filtering method. Finally, in this paper, we propose a method for vehicle control, modeling, lane tracking, and obstacle avoidance, which are confirmed through vehicles tests.

  • PDF

Traffic Operation Strategy for the Mixed Traffic Flow on Autonomous Vehicle Pilot Zone: Focusing on Pangyo Zero City (자율주행차 혼재 시 시범운행지구 교통운영전략 수립: 판교제로시티를 중심으로)

  • Donghyun Lim;Woosuk Kim;Jongho Kim;Hyungjoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.172-191
    • /
    • 2023
  • This study was undertaken to strategize the mixed traffic operation of autonomous vehicles in the pilot zone. This was achieved by analyzing the changes expected when autonomous vehicles are mixed in the autonomous vehicle pilot zone. Although finding a safe and efficient traffic operation strategy is required for the pilot zone to serve as a test bed for autonomous vehicles, there is no available operation strategy based on the mixture of autonomous vehicles. In order to presents a traffic operation strategies for each period of autonomous vehicle introduction, traffic efficiency and safety analysis was performed according to the autonomous vehicle market percentage rate. Based on the analysis results, the introduction stage was divided into introductory stage, transition period, and stable period based on the autonomous vehicle market share of 30% and 70%. This study presents the following traffic operation strategies. Considering the traffic flow operation strategy, we suggest the advancement of the existing road infrastructure at the introductory stage, and operating an autonomous driving lane and the mileage system during the transition period. We also propose expanding the operation of autonomous driving lanes and easing the speed limit during the stable period. In the traffic safety strategy, we present a manual and legal system for responding to autonomous vehicle accidents in the introductory stage, an analysis of the causes of autonomous vehicle accidents and the implementation of preventive policies in the transition period, and the advancement of the autonomous system and the reinforcement of the security system during the stable period. Through the traffic operation strategy presented in this study, we foresee the possibility of preemptively responding to the changes of traffic flow and traffic safety expected due to the mixture of autonomous vehicles in the autonomous vehicle pilot zone in the future.

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

Development of Improvement Technology of Sound Insulation Performance of Unitex Structure (유니텍스 구조의 차음성능 향상기술 개발)

  • Byeon, Jun-Ho;Lee, Joong-Hyeok;Kim, Seockhyun;Lee, Jae-Joon;Ki, Ho-Cheol
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Unitex is widely used for the floor structure of urban railway vehicles because it shows good structural safety and heat insulation, has long life, and lowers the cost owing to easy installation. However, in spite of these merits, Unitex has a limit to the sound insulation performance, which is very important in vehicle structure. It shows a sound transmission loss considerably lower than the mass law value, which indicates the sound insulation performance per unit weight. Recently, railway vehicle manufacturers and Unitex supplier have tried to improve the sound insulation performance of Unitex, but meaningful results have not been achieved yet. Through the industry-university collaborative research, we propose structural improvement methods to increase the sound transmission loss by more than 5dB and we then verify the effect by performing experiments.

Current Status of Ceramic Composites Technology for Space Vehicle (우주비행체용 세라믹 복합재료 해외기술 동향)

  • Lee, Ho-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2009
  • In this review an attempt is made to give the background to the current trends in foreign developments in the ceramic matrix composites for space vehicles. The lightweight and high temperature specific modulus properties of ceramic composites have continued to develop for designing advanced propulsion structures and for increasing space vehicle performances. Those applications require advanced materials with good resistance to high temperatures, to oxidation environments and to mechanical stresses. The advantages of ceramic matrix composites are the low specific weight, the high specific strength over a wide temperature ranges, and their good damage tolerance compared to tungsten, pyrographites and polycrystalline graphites. Due to these advantages ceramic matrix composites are currently used in rocket engine chamber, nozzle, solar array, radar antenna, mirror support structures, hypersonic leading edge articles, heat shields, reentry vehicle nose tips, and radiators for spacecraft. Various processes are discussed together with examples of current application so that some of the advanced technologies can be possibly applied to Korean space technology.

  • PDF

Development of Mask-RCNN Based Axle Control Violation Detection Method for Enforcement on Overload Trucks (과적 화물차 단속을 위한 Mask-RCNN기반 축조작 검지 기술 개발)

  • Park, Hyun suk;Cho, Yong sung;Kim, Young Nam;Kim, Jin pyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.57-66
    • /
    • 2022
  • The Road Management Administration is cracking down on overloaded vehicles by installing low-speed or high-speed WIMs at toll gates and main lines on expressways. However, in recent years, the act of intelligently evading the overloaded-vehicle control system of the Road Management Administration by illegally manipulating the variable axle of an overloaded truck is increasing. In this manipulation, when entering the overloaded-vehicle checkpoint, all axles of the vehicle are lowered to pass normally, and when driving on the main road, the variable axle of the vehicle is illegally lifted with the axle load exceeding 10 tons alarmingly. Therefore, this study developed a technology to detect the state of the variable axle of a truck driving on the road using roadside camera images. In particular, this technology formed the basis for cracking down on overloaded vehicles by lifting the variable axle after entering the checkpoint and linking the vehicle with the account information of the checkpoint. Fundamentally, in this study, the tires of the vehicle were recognized using the Mask RCNN algorithm, the recognized tires were virtually arranged before and after the checkpoint, and the height difference of the vehicle was measured from the arrangement to determine whether the variable axle was lifted after the vehicle left the checkpoint.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Autonomous Self-Estimation of Vehicle Travel Times in VANET Environment (VANET 환경에서 자율적 자가추정(Self-Estimation) 통행시간정보 산출기법 개발)

  • Im, Hui-Seop;O, Cheol;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.107-118
    • /
    • 2010
  • Wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) enable the development of more sophisticated and effective traffic information systems. This study presents a method to estimate vehicular travel times in a vehicular ad hoc network (VANET) environment. A novel feature of the proposed method is estimating individual vehicle travel times through advanced on-board units in each vehicle, referred to as self-estimated travel time in this study. The method uses travel information including vehicle position and speed at each given time step transmitted through the V2V and V2I communications. Vehicle trajectory data obtained from the VISSIM simulator is used for evaluating the accuracy of estimated travel times. Relevant technical issues for successful field implementation are also discussed.