• Title/Summary/Keyword: advanced thermal analysis

Search Result 782, Processing Time 0.029 seconds

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature (로켓 노즐목 소재 C/SiC 복합재 고온 파괴 특성)

  • Yoon, Dong Hyun;Lee, Jeong Won;Kim, Jae Hoon;Sihn, Ihn Cheol;Lim, Byung Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2016
  • In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

Effects of Elevated CO2 Concentration on Leaf Phenology of Quercus acutissima (이산화탄소 농도 증가가 상수리나무 잎의 계절현상에 미치는 영향)

  • Seo, Dong-Jin;Oh, Chang-Young;Han, Sim-Hee;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • Effects of elevated $CO_2$ on leaf phenology of Quercus acutissima were examined using open-top chambers, which had ambient and elevated $CO_2$ concentrations (ambient ${\times}1.4$, ambient ${\times}1.8$). To analyze the effect of chamber, non-treatment block was established near outside of the chambers. In 2013, budburst, leaf unfolding, coloring, and shedding were surveyed, and spring phenology was surveyed in 2014. Thermal sum (base temperature $+5^{\circ}C$) of each phenological event occurred was recorded. In addition, bud samples were collected and analyzed for carbohydrate contents in March 2014. Elevated $CO_2$ concentration advanced budburst and leaf unfolding, and delayed shedding in 2013. However, in 2014, the temperature of the spring season was high, and there was no significant effect of elevated $CO_2$ concentration on spring phenology. Carbohydrates content, such as starch, total non-structural carbohydrate and total soluble sugar, were significantly increased in response to elevated $CO_2$ concentration. It has been proposed that elevated $CO_2$ concentration could extend the growing season of temperate species with increased possibility of frost damage due to early bud opening and leaf unfolding. However, our analysis showed that the increased carbohydrate concentration in bud under elevated $CO_2$ would reduce the possibility of early spring frost damage by acting as cryoprotectant.

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

Pyrolysis Characteristics of CCL(Copper Clad Laminate) Based Paper/Phenolic Resin Composites (종이/페놀수지가 주성분인 동박적층판(Copper Clad Laminate)의 열분해 특성)

  • Song, Jae-Hun;Kim, Seung-Do;Ahn, Hyun-Cheol;Kim, Gyung-Soo;Kim, Sang-Bum;Jung, Jae-Sung;Gong, Sung-Ho;Cho, Young-Gae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1013-1019
    • /
    • 2007
  • Electronic wastes have increased tremendously. However, any reliable treatment methodologies have rarely been established. Electronic wastes have posed serious disposal problem due to their physico-chemical stability. This paper investigated the application possibility of pyrolysis for the purpose of recycling the p-CCL(phenol based Copper Clad Laminate). Thermogravimetric analysis(TGA) was used to investigate the thermal decomposition pattern of p-CCL. We elucidated the characteristics of pyrolysis by-products at operating temperatures of 280, 350 and $600^{\circ}C$. GC/MS and FT-IR were used to characterize the liquid by-products along with general characterization methods such as Ultimate Analysis, Proximate Analysis and Heating Value, whereas general characterization methods were only introduced for the solid by-products. At a heating rate of $5^{\circ}C$/min, TGA curves exhibited three decomposition stages: (1) low-temperature decomposition region$(<280^{\circ}C)$, (2) medium temperature region$(280\sim350^{\circ}C)$ and (3) high-temperature region$(>350^{\circ}C)$. The major compounds of liquid by-products at low- and medium-temperatures were accounted for by water and phenol, whereas branched phenols and furans were major compounds at high-temperatures. As the temperature increases, volatile quantities decreased but the fixed carbon increased. High heating values of solid by-products($7,400\sim7,600$ kcal/kg) would suggest that the solid by-products could be applicable as fuel. In addition, high fixed carbon but low ash content of the solid by-products offered an implication that they are capable of being upgradable for adsorbent after applying appropriate activating process.

Synthesis of Ultra High Refractive Index Monomer for Plastic Optical Lens and Its Ophthalmic Lens Preparation (플라스틱 안경렌즈용 초고굴절 모노머 합성 및 이를 이용한 안경렌즈 제조)

  • Jang, Dong Gyu;Kim, Jong Hyo;Lee, Soo Min;Roh, Soo Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Purpose: Plastic optical monomer materials having ultra high refractive index have an income of the whole quantity from advanced nations to domestic companies which are related to plastic optical lens. It is necessary to develop novel plastic optical lens materials in order to overcome a FTA provision and revitalize a stagnating optical lens industry in the interior optical lens industries. The new plastic optical lens materials against the substitution effect of income should be gradually demanded. This work will be synthesized novel super high refractive monomer resin materials of urethane lens series and studied the properties of optical lens using it. Methods: ETS-4 (2-(2-mercaptoethylthio)-3-{2-[3-mercapto-2-(2-mercaptoethylthio)propyl thio]ethylthio}propane -1-thiol), which is optical lens monomer resin having super high refractive index, was synthesized and identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. After mixing evenly from mixed monomer resin and diisocyanate series, it was casting in glass mold. After thermal curing, the obtained optical lenses were measured and compared with the refractive index and Abbe number for studies of their optical properties. Results: We have synthesized the novel ultra high refractive index monomer resin, ETS-4, and have identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. The existence of three isomers for EST-4 was identified by $^{13}C$ NMR spectroscopy. The refractive index ($N_d$ at $25^{\circ}C$) of monomer resin in liquid state obtained from the Abbe refractometer was 1.647. The refractive indexes of raw plastic optical lenses prepared from the mixed ETS-4 monomer and diisocyanate series were in the range of 1.656~1.680. Conclusions: Novel super high refractive index plastic optical lens monomer was synthesized and analysed, the optical lenses prepared using it were colorless transparency and excellent properties. It is of utility for the industrialization.

  • PDF

The Electron Trap Analysis in Thermoluminescent LiF Crystal

  • Park, Dae-Yoon;Ko, Chung-Duck;Lee, Sang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.214-222
    • /
    • 1972
  • In the optic,11 grade LiF crystal, the electron traps corresponding to the thermoluminescence(abbreviated to TL) glow peak develop as irradiation dose is increased. Originally the electron trap of the crystal has two levels but as the dose reaches to the order of 10$^4$rontgen, it attains five levels as observed in the TL glow curves. The five trap depths are determined from the glow peak temperatures for two different heating rates, $\theta$=6.6$^{\circ}C$/sec and 3.4$^{\circ}C$/sec. The electron trap depths have the following values E$_1$=0.79 eV, E$_2$=0.93 eV, E$_3$=1.02 eV, E$_4$=1.35 eV, E$_{5}$=1.69eV. The special feature of thermoluminescence of optical grade LiF is that the traps, except E$_1$and E$_2$corresponding to 12$0^{\circ}C$ glow peak and 15$0^{\circ}C$ glow peak for $\theta$=6.6$^{\circ}C$/sec, have severe thermal instability, namely E$_3$, E$_4$and E$_{5}$ levels disappear during bleaching process. These defects in the optical grade LiF crystal seem annealed out during the course of TL measurement. The fresh or long time unused LiF(Mg) crystal shows only two glow peaks at 17$0^{\circ}C$ and 23$0^{\circ}C$ for $\theta$=6.6$^{\circ}C$/sec, but upon sensitization with r-ray irradiation, it converts to the six glow peak state. The four electron traps, E$_1$, E$_2$, E$_3$, and E$_{6}$ created by r-ray irradiation and corresponding to the glow peaks at T=10$0^{\circ}C$ 13$0^{\circ}C$, 15$0^{\circ}C$ and 29$0^{\circ}C$ are stable and not easily annealed out thermally, The sensitization essentially required to LiF(Mg) dosimeter is to give the crystal the stable six levels in the electron trap. In optical grade LiF, the plot between logarithm of total TL output versus logarithm of r-ray dose gives more supra-linear feature than that of LiF(Mg). However, if one takes the height of 12$0^{\circ}C$ glow peak(S=6.6$^{\circ}C$/sec), instead of the total TL output, the curve becomes close to that of LiF(Mg).

  • PDF